Header logo is


2018


Thumb xl dip final
Deep Inertial Poser: Learning to Reconstruct Human Pose from Sparse Inertial Measurements in Real Time

Huang, Y., Kaufmann, M., Aksan, E., Black, M. J., Hilliges, O., Pons-Moll, G.

ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 37, pages: 185:1-185:15, ACM, November 2018, Two first authors contributed equally (article)

Abstract
We demonstrate a novel deep neural network capable of reconstructing human full body pose in real-time from 6 Inertial Measurement Units (IMUs) worn on the user's body. In doing so, we address several difficult challenges. First, the problem is severely under-constrained as multiple pose parameters produce the same IMU orientations. Second, capturing IMU data in conjunction with ground-truth poses is expensive and difficult to do in many target application scenarios (e.g., outdoors). Third, modeling temporal dependencies through non-linear optimization has proven effective in prior work but makes real-time prediction infeasible. To address this important limitation, we learn the temporal pose priors using deep learning. To learn from sufficient data, we synthesize IMU data from motion capture datasets. A bi-directional RNN architecture leverages past and future information that is available at training time. At test time, we deploy the network in a sliding window fashion, retaining real time capabilities. To evaluate our method, we recorded DIP-IMU, a dataset consisting of 10 subjects wearing 17 IMUs for validation in 64 sequences with 330,000 time instants; this constitutes the largest IMU dataset publicly available. We quantitatively evaluate our approach on multiple datasets and show results from a real-time implementation. DIP-IMU and the code are available for research purposes.

ps

data code (coming soon) pdf preprint video DOI [BibTex]

2018


data code (coming soon) pdf preprint video DOI [BibTex]


Thumb xl universal custom complex magnetic spring design methodology
Universal Custom Complex Magnetic Spring Design Methodology

Woodward, M. A., Sitti, M.

IEEE Transactions on Magnetics, 54(1):1-13, October 2018 (article)

Abstract
A design methodology is presented for creating custom complex magnetic springs through the design of force-displacement curves. This methodology results in a magnet configuration, which will produce a desired force-displacement relationship. Initially, the problem is formulated and solved as a system of linear equations. Then, given the limited likelihood of a single solution being feasibly manufactured, key parameters of the solution are extracted and varied to create a family of solutions. Finally, these solutions are refined using numerical optimization. Given the properties of magnets, this methodology can create any well-defined function of force versus displacement and is model-independent. To demonstrate this flexibility, a number of example magnetic springs are designed; one of which, designed for use in a jumping-gliding robot's shape memory alloy actuated clutch, is manufactured and experimentally characterized. Due to the scaling of magnetic forces, the displacement region which these magnetic springs are most applicable is that of millimeters and below. However, this region is well situated for miniature robots and smart material actuators, where a tailored magnetic spring, designed to compliment a component, can enhance its performance while adding new functionality. The methodology is also expendable to variable interactions and multi-dimensional magnetic field design.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl stco paper figure11
Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective

Tronarp, F., Kersting, H., Särkkä, S., Hennig, P.

ArXiv preprint 2018, arXiv:1807.09737 [stat.ME], October 2018 (article) In revision

Abstract
We formulate probabilistic numerical approximations to solutions of ordinary differential equations (ODEs) as problems in Gaussian process (GP) regression with non-linear measurement functions. This is achieved by defining the measurement sequence to consists of the observations of the difference between the derivative of the GP and the vector field evaluated at the GP---which are all identically zero at the solution of the ODE. When the GP has a state-space representation, the problem can be reduced to a Bayesian state estimation problem and all widely-used approximations to the Bayesian filtering and smoothing problems become applicable. Furthermore, all previous GP-based ODE solvers, which were formulated in terms of generating synthetic measurements of the vector field, come out as specific approximations. We derive novel solvers, both Gaussian and non-Gaussian, from the Bayesian state estimation problem posed in this paper and compare them with other probabilistic solvers in illustrative experiments.

pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl cover
Deep Neural Network-based Cooperative Visual Tracking through Multiple Micro Aerial Vehicles

Price, E., Lawless, G., Ludwig, R., Martinovic, I., Buelthoff, H. H., Black, M. J., Ahmad, A.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 3, pages: 3193-3200, IEEE, October 2018, Also accepted and presented in the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (article)

Abstract
Multi-camera tracking of humans and animals in outdoor environments is a relevant and challenging problem. Our approach to it involves a team of cooperating micro aerial vehicles (MAVs) with on-board cameras only. DNNs often fail at objects with small scale or far away from the camera, which are typical characteristics of a scenario with aerial robots. Thus, the core problem addressed in this paper is how to achieve on-board, online, continuous and accurate vision-based detections using DNNs for visual person tracking through MAVs. Our solution leverages cooperation among multiple MAVs and active selection of most informative regions of image. We demonstrate the efficiency of our approach through simulations with up to 16 robots and real robot experiments involving two aerial robots tracking a person, while maintaining an active perception-driven formation. ROS-based source code is provided for the benefit of the community.

ps

Published Version link (url) DOI Project Page [BibTex]

Published Version link (url) DOI Project Page [BibTex]


no image
Control of Musculoskeletal Systems using Learned Dynamics Models

Büchler, D., Calandra, R., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 3(4):3161-3168, IEEE, October 2018 (article)

Abstract
Controlling musculoskeletal systems, especially robots actuated by pneumatic artificial muscles, is a challenging task due to nonlinearities, hysteresis effects, massive actuator de- lay and unobservable dependencies such as temperature. Despite such difficulties, muscular systems offer many beneficial prop- erties to achieve human-comparable performance in uncertain and fast-changing tasks. For example, muscles are backdrivable and provide variable stiffness while offering high forces to reach high accelerations. In addition, the embodied intelligence deriving from the compliance might reduce the control demands for specific tasks. In this paper, we address the problem of how to accurately control musculoskeletal robots. To address this issue, we propose to learn probabilistic forward dynamics models using Gaussian processes and, subsequently, to employ these models for control. However, Gaussian processes dynamics models cannot be set-up for our musculoskeletal robot as for traditional motor- driven robots because of unclear state composition etc. We hence empirically study and discuss in detail how to tune these approaches to complex musculoskeletal robots and their specific challenges. Moreover, we show that our model can be used to accurately control an antagonistic pair of pneumatic artificial muscles for a trajectory tracking task while considering only one- step-ahead predictions of the forward model and incorporating model uncertainty.

ei

RAL18final link (url) DOI [BibTex]

RAL18final link (url) DOI [BibTex]


Thumb xl toc image
Fast spatial scanning of 3D ultrasound fields via thermography

Melde, K., Qiu, T., Fischer, P.

Applied Physics Letters, 113(13):133503, September 2018 (article)

Abstract
We propose and demonstrate a thermographic method that allows rapid scanning of ultrasound fields in a volume to yield 3D maps of the sound intensity. A thin sound-absorbing membrane is continuously translated through a volume of interest while a thermal camera records the evolution of its surface temperature. The temperature rise is a function of the absorbed sound intensity, such that the thermal image sequence can be combined to reveal the sound intensity distribution in the traversed volume. We demonstrate the mapping of ultrasound fields, which is several orders of magnitude faster than scanning with a hydrophone. Our results are in very good agreement with theoretical simulations.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl screenshot from 2017 07 27 17 24 14
Playful: Reactive Programming for Orchestrating Robotic Behavior

Berenz, V., Schaal, S.

IEEE Robotics Automation Magazine, 25(3):49-60, September 2018 (article) In press

Abstract
For many service robots, reactivity to changes in their surroundings is a must. However, developing software suitable for dynamic environments is difficult. Existing robotic middleware allows engineers to design behavior graphs by organizing communication between components. But because these graphs are structurally inflexible, they hardly support the development of complex reactive behavior. To address this limitation, we propose Playful, a software platform that applies reactive programming to the specification of robotic behavior.

am

playful website playful_IEEE_RAM link (url) DOI [BibTex]


Thumb xl screen shot 2018 09 19 at 09.33.59
ClusterNet: Instance Segmentation in RGB-D Images

Shao, L., Tian, Y., Bohg, J.

arXiv, September 2018, Submitted to ICRA'19 (article) Submitted

Abstract
We propose a method for instance-level segmentation that uses RGB-D data as input and provides detailed information about the location, geometry and number of {\em individual\/} objects in the scene. This level of understanding is fundamental for autonomous robots. It enables safe and robust decision-making under the large uncertainty of the real-world. In our model, we propose to use the first and second order moments of the object occupancy function to represent an object instance. We train an hourglass Deep Neural Network (DNN) where each pixel in the output votes for the 3D position of the corresponding object center and for the object's size and pose. The final instance segmentation is achieved through clustering in the space of moments. The object-centric training loss is defined on the output of the clustering. Our method outperforms the state-of-the-art instance segmentation method on our synthesized dataset. We show that our method generalizes well on real-world data achieving visually better segmentation results.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl grasping
Leveraging Contact Forces for Learning to Grasp

Merzic, H., Bogdanovic, M., Kappler, D., Righetti, L., Bohg, J.

arXiv, September 2018, Submitted to ICRA'19 (article) Submitted

Abstract
Grasping objects under uncertainty remains an open problem in robotics research. This uncertainty is often due to noisy or partial observations of the object pose or shape. To enable a robot to react appropriately to unforeseen effects, it is crucial that it continuously takes sensor feedback into account. While visual feedback is important for inferring a grasp pose and reaching for an object, contact feedback offers valuable information during manipulation and grasp acquisition. In this paper, we use model-free deep reinforcement learning to synthesize control policies that exploit contact sensing to generate robust grasping under uncertainty. We demonstrate our approach on a multi-fingered hand that exhibits more complex finger coordination than the commonly used two- fingered grippers. We conduct extensive experiments in order to assess the performance of the learned policies, with and without contact sensing. While it is possible to learn grasping policies without contact sensing, our results suggest that contact feedback allows for a significant improvement of grasping robustness under object pose uncertainty and for objects with a complex shape.

am

video arXiv [BibTex]


Thumb xl toc image
Diffusion Measurements of Swimming Enzymes with Fluorescence Correlation Spectroscopy

Günther, J., Börsch, M., Fischer, P.

Accounts of Chemical Research, August 2018, PMID: 30160941 (article)

Abstract
ConspectusSelf-propelled chemical motors are chemically powered micro- or nanosized swimmers. The energy required for these motors’ active motion derives from catalytic chemical reactions and the transformation of a fuel dissolved in the solution. While self-propulsion is now well established for larger particles, it is still unclear if enzymes, nature’s nanometer-sized catalysts, are potentially also self-powered nanomotors. Because of its small size, any increase in an enzyme’s diffusion due to active self-propulsion must be observed on top of the enzyme’s passive Brownian motion, which dominates at this scale. Fluorescence correlation spectroscopy (FCS) is a sensitive method to quantify the diffusion properties of single fluorescently labeled molecules in solution. FCS experiments have shown a general increase in the diffusion constant of a number of enzymes when the enzyme is catalytically active. Diffusion enhancements after addition of the enzyme’s substrate (and sometimes its inhibitor) of up to 80\% have been reported, which is at least 1 order of magnitude higher than what theory would predict. However, many factors contribute to the FCS signal and in particular the shape of the autocorrelation function, which underlies diffusion measurements by fluorescence correlation spectroscopy. These effects need to be considered to establish if and by how much the catalytic activity changes an enzyme’s diffusion.We carefully review phenomena that can play a role in FCS experiments and the determination of enzyme diffusion, including the dissociation of enzyme oligomers upon interaction with the substrate, surface binding of the enzyme to glass during the experiment, conformational changes upon binding, and quenching of the fluorophore. We show that these effects can cause changes in the FCS signal that behave similar to an increase in diffusion. However, in the case of the enzymes F1-ATPase and alkaline phosphatase, we demonstrate that there is no measurable increase in enzyme diffusion. Rather, dissociation and conformational changes account for the changes in the FCS signal in the former and fluorophore quenching in the latter. Within the experimental accuracy of our FCS measurements, we do not observe any change in diffusion due to activity for the enzymes we have investigated.We suggest useful control experiments and additional tests for future FCS experiments that should help establish if the observed diffusion enhancement is real or if it is due to an experimental or data analysis artifact. We show that fluorescence lifetime and mean intensity measurements are essential in order to identify the nature of the observed changes in the autocorrelation function. While it is clear from theory that chemically active enzymes should also act as self-propelled nanomotors, our FCS measurements show that the associated increase in diffusion is much smaller than previously reported. Further experiments are needed to quantify the contribution of the enzymes’ catalytic activity to their self-propulsion. We hope that our findings help to establish a useful protocol for future FCS studies in this field and help establish by how much the diffusion of an enzyme is enhanced through catalytic activity.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl toc imagen
Uphill production of dihydrogen by enzymatic oxidation of glucose without an external energy source

Suraniti, E., Merzeau, P., Roche, J., Gounel, S., Mark, A. G., Fischer, P., Mano, N., Kuhn, A.

Nature Communications, 9(1):3229, August 2018 (article)

Abstract
Chemical systems do not allow the coupling of energy from several simple reactions to drive a subsequent reaction, which takes place in the same medium and leads to a product with a higher energy than the one released during the first reaction. Gibbs energy considerations thus are not favorable to drive e.g., water splitting by the direct oxidation of glucose as a model reaction. Here, we show that it is nevertheless possible to carry out such an energetically uphill reaction, if the electrons released in the oxidation reaction are temporarily stored in an electromagnetic system, which is then used to raise the electrons' potential energy so that they can power the electrolysis of water in a second step. We thereby demonstrate the general concept that lower energy delivering chemical reactions can be used to enable the formation of higher energy consuming reaction products in a closed system.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl toc image
A machine from machines

Fischer, P.

Nature Physics, July 2018 (article)

Abstract
Building spinning microrotors that self-assemble and synchronize to form a gear sounds like an impossible feat. However, it has now been achieved using only a single type of building block -- a colloid that self-propels.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl toc image
Chemotaxis of Active Janus Nanoparticles

Popescu, M. N., Uspal, W. E., Bechinger, C., Fischer, P.

Nano Letters, July 2018, PMID: 30047271 (article)

Abstract
While colloids and molecules in solution exhibit passive Brownian motion, particles that are partially covered with a catalyst, which promotes the transformation of a fuel dissolved in the solution, can actively move. These active Janus particles are known as “chemical nanomotors” or self-propelling “swimmers” and have been realized with a range of catalysts, sizes, and particle geometries. Because their active translation depends on the fuel concentration, one expects that active colloidal particles should also be able to swim toward a fuel source. Synthesizing and engineering nanoparticles with distinct chemotactic properties may enable important developments, such as particles that can autonomously swim along a pH gradient toward a tumor. Chemotaxis requires that the particles possess an active coupling of their orientation to a chemical gradient. In this Perspective we provide a simple, intuitive description of the underlying mechanisms for chemotaxis, as well as the means to analyze and classify active particles that can show positive or negative chemotaxis. The classification provides guidance for engineering a specific response and is a useful organizing framework for the quantitative analysis and modeling of chemotactic behaviors. Chemotaxis is emerging as an important focus area in the field of active colloids and promises a number of fascinating applications for nanoparticles and particle-based delivery.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning an Approximate Model Predictive Controller with Guarantees

Hertneck, M., Koehler, J., Trimpe, S., Allgöwer, F.

IEEE Control Systems Letters, 2(3):543-548, July 2018 (article)

Abstract
A supervised learning framework is proposed to approximate a model predictive controller (MPC) with reduced computational complexity and guarantees on stability and constraint satisfaction. The framework can be used for a wide class of nonlinear systems. Any standard supervised learning technique (e.g. neural networks) can be employed to approximate the MPC from samples. In order to obtain closed-loop guarantees for the learned MPC, a robust MPC design is combined with statistical learning bounds. The MPC design ensures robustness to inaccurate inputs within given bounds, and Hoeffding’s Inequality is used to validate that the learned MPC satisfies these bounds with high confidence. The result is a closed-loop statistical guarantee on stability and constraint satisfaction for the learned MPC. The proposed learning-based MPC framework is illustrated on a nonlinear benchmark problem, for which we learn a neural network controller with guarantees.

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


Thumb xl mazen
Robust Physics-based Motion Retargeting with Realistic Body Shapes

Borno, M. A., Righetti, L., Black, M. J., Delp, S. L., Fiume, E., Romero, J.

Computer Graphics Forum, 37, pages: 6:1-12, July 2018 (article)

Abstract
Motion capture is often retargeted to new, and sometimes drastically different, characters. When the characters take on realistic human shapes, however, we become more sensitive to the motion looking right. This means adapting it to be consistent with the physical constraints imposed by different body shapes. We show how to take realistic 3D human shapes, approximate them using a simplified representation, and animate them so that they move realistically using physically-based retargeting. We develop a novel spacetime optimization approach that learns and robustly adapts physical controllers to new bodies and constraints. The approach automatically adapts the motion of the mocap subject to the body shape of a target subject. This motion respects the physical properties of the new body and every body shape results in a different and appropriate movement. This makes it easy to create a varied set of motions from a single mocap sequence by simply varying the characters. In an interactive environment, successful retargeting requires adapting the motion to unexpected external forces. We achieve robustness to such forces using a novel LQR-tree formulation. We show that the simulated motions look appropriate to each character’s anatomy and their actions are robust to perturbations.

mg ps

pdf video [BibTex]

pdf video [BibTex]


no image
Convergence Rates of Gaussian ODE Filters

Kersting, H., Sullivan, T. J., Hennig, P.

arXiv preprint 2018, arXiv:1807.09737 [math.NA], July 2018 (article) In revision

Abstract
A recently-introduced class of probabilistic (uncertainty-aware) solvers for ordinary differential equations (ODEs) applies Gaussian (Kalman) filtering to initial value problems. These methods model the true solution $x$ and its first $q$ derivatives a priori as a Gauss--Markov process $\boldsymbol{X}$, which is then iteratively conditioned on information about $\dot{x}$. We prove worst-case local convergence rates of order $h^{q+1}$ for a wide range of versions of this Gaussian ODE filter, as well as global convergence rates of order $h^q$ in the case of $q=1$ and an integrated Brownian motion prior, and analyse how inaccurate information on $\dot{x}$ coming from approximate evaluations of $f$ affects these rates. Moreover, we present explicit formulas for the steady states and show that the posterior confidence intervals are well calibrated in all considered cases that exhibit global convergence---in the sense that they globally contract at the same rate as the truncation error.

pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl fitter18 frai imus
Teaching a robot bimanual hand-clapping games via wrist-worn IMUs

Fitter, N. T., Kuchenbecker, K. J.

Frontiers in Robotics and Artificial Intelligence, 5(85), July 2018 (article)

Abstract
Colleagues often shake hands in greeting, friends connect through high fives, and children around the world rejoice in hand-clapping games. As robots become more common in everyday human life, they will have the opportunity to join in these social-physical interactions, but few current robots are intended to touch people in friendly ways. This article describes how we enabled a Baxter Research Robot to both teach and learn bimanual hand-clapping games with a human partner. Our system monitors the user's motions via a pair of inertial measurement units (IMUs) worn on the wrists. We recorded a labeled library of 10 common hand-clapping movements from 10 participants; this dataset was used to train an SVM classifier to automatically identify hand-clapping motions from previously unseen participants with a test-set classification accuracy of 97.0%. Baxter uses these sensors and this classifier to quickly identify the motions of its human gameplay partner, so that it can join in hand-clapping games. This system was evaluated by N = 24 naïve users in an experiment that involved learning sequences of eight motions from Baxter, teaching Baxter eight-motion game patterns, and completing a free interaction period. The motion classification accuracy in this less structured setting was 85.9%, primarily due to unexpected variations in motion timing. The quantitative task performance results and qualitative participant survey responses showed that learning games from Baxter was significantly easier than teaching games to Baxter, and that the teaching role caused users to consider more teamwork aspects of the gameplay. Over the course of the experiment, people felt more understood by Baxter and became more willing to follow the example of the robot. Users felt uniformly safe interacting with Baxter, and they expressed positive opinions of Baxter and reported fun interacting with the robot. Taken together, the results indicate that this robot achieved credible social-physical interaction with humans and that its ability to both lead and follow systematically changed the human partner's experience.

hi

DOI [BibTex]

DOI [BibTex]


Thumb xl octo turned
Real-time Perception meets Reactive Motion Generation

(Best Systems Paper Finalists - Amazon Robotics Best Paper Awards in Manipulation)

Kappler, D., Meier, F., Issac, J., Mainprice, J., Garcia Cifuentes, C., Wüthrich, M., Berenz, V., Schaal, S., Ratliff, N., Bohg, J.

IEEE Robotics and Automation Letters, 3(3):1864-1871, July 2018 (article)

Abstract
We address the challenging problem of robotic grasping and manipulation in the presence of uncertainty. This uncertainty is due to noisy sensing, inaccurate models and hard-to-predict environment dynamics. Our approach emphasizes the importance of continuous, real-time perception and its tight integration with reactive motion generation methods. We present a fully integrated system where real-time object and robot tracking as well as ambient world modeling provides the necessary input to feedback controllers and continuous motion optimizers. Specifically, they provide attractive and repulsive potentials based on which the controllers and motion optimizer can online compute movement policies at different time intervals. We extensively evaluate the proposed system on a real robotic platform in four scenarios that exhibit either challenging workspace geometry or a dynamic environment. We compare the proposed integrated system with a more traditional sense-plan-act approach that is still widely used. In 333 experiments, we show the robustness and accuracy of the proposed system.

am

arxiv video video link (url) DOI Project Page [BibTex]


Thumb xl screen shot 2018 06 29 at 4.24.39 pm
Innate turning preference of leaf-cutting ants in the absence of external orientation cues

Endlein, T., Sitti, M.

Journal of Experimental Biology, The Company of Biologists Ltd, June 2018 (article)

Abstract
Many ants use a combination of cues for orientation but how do ants find their way when all external cues are suppressed? Do they walk in a random way or are their movements spatially oriented? Here we show for the first time that leaf-cutting ants (Acromyrmex lundii) have an innate preference of turning counter-clockwise (left) when external cues are precluded. We demonstrated this by allowing individual ants to run freely on the water surface of a newly-developed treadmill. The surface tension supported medium-sized workers but effectively prevented ants from reaching the wall of the vessel, important to avoid wall-following behaviour (thigmotaxis). Most ants ran for minutes on the spot but also slowly turned counter-clockwise in the absence of visual cues. Reconstructing the effectively walked path revealed a looping pattern which could be interpreted as a search strategy. A similar turning bias was shown for groups of ants in a symmetrical Y-maze where twice as many ants chose the left branch in the absence of optical cues. Wall-following behaviour was tested by inserting a coiled tube before the Y-fork. When ants traversed a left-coiled tube, more ants chose the left box and vice versa. Adding visual cues in form of vertical black strips either outside the treadmill or on one branch of the Y-maze led to oriented walks towards the strips. It is suggested that both, the turning bias and the wall-following are employed as search strategies for an unknown environment which can be overridden by visual cues.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 1
Motility and chemotaxis of bacteria-driven microswimmers fabricated using antigen 43-mediated biotin display

Schauer, O., Mostaghaci, B., Colin, R., Hürtgen, D., Kraus, D., Sitti, M., Sourjik, V.

Scientific Reports, 8(1):9801, Nature Publishing Group, June 2018 (article)

Abstract
Bacteria-driven biohybrid microswimmers (bacteriabots) combine synthetic cargo with motile living bacteria that enable propulsion and steering. Although fabrication and potential use of such bacteriabots have attracted much attention, existing methods of fabrication require an extensive sample preparation that can drastically decrease the viability and motility of bacteria. Moreover, chemotactic behavior of bacteriabots in a liquid medium with chemical gradients has remained largely unclear. To overcome these shortcomings, we designed Escherichia coli to autonomously display biotin on its cell surface via the engineered autotransporter antigen 43 and thus to bind streptavidin-coated cargo. We show that the cargo attachment to these bacteria is greatly enhanced by motility and occurs predominantly at the cell poles, which is greatly beneficial for the fabrication of motile bacteriabots. We further performed a systemic study to understand and optimize the ability of these bacteriabots to follow chemical gradients. We demonstrate that the chemotaxis of bacteriabots is primarily limited by the cargo-dependent reduction of swimming speed and show that the fabrication of bacteriabots using elongated E. coli cells can be used to overcome this limitation.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 41586 2018 250 fig1 html
Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography

Wang, W., Timonen, J. V. I., Carlson, A., Drotlef, D., Zhang, C. T., Kolle, S., Grinthal, A., Wong, T., Hatton, B., Kang, S. H., Kennedy, S., Chi, J., Blough, R. T., Sitti, M., Mahadevan, L., Aizenberg, J.

Nature, June 2018 (article)

Abstract
Developing adaptive materials with geometries that change in response to external stimuli provides fundamental insights into the links between the physical forces involved and the resultant morphologies and creates a foundation for technologically relevant dynamic systems1,2. In particular, reconfigurable surface topography as a means to control interfacial properties 3 has recently been explored using responsive gels 4 , shape-memory polymers 5 , liquid crystals6-8 and hybrid composites9-14, including magnetically active slippery surfaces12-14. However, these designs exhibit a limited range of topographical changes and thus a restricted scope of function. Here we introduce a hierarchical magneto-responsive composite surface, made by infiltrating a ferrofluid into a microstructured matrix (termed ferrofluid-containing liquid-infused porous surfaces, or FLIPS). We demonstrate various topographical reconfigurations at multiple length scales and a broad range of associated emergent behaviours. An applied magnetic-field gradient induces the movement of magnetic nanoparticles suspended in the ferrofluid, which leads to microscale flow of the ferrofluid first above and then within the microstructured surface. This redistribution changes the initially smooth surface of the ferrofluid (which is immobilized by the porous matrix through capillary forces) into various multiscale hierarchical topographies shaped by the size, arrangement and orientation of the confining microstructures in the magnetic field. We analyse the spatial and temporal dynamics of these reconfigurations theoretically and experimentally as a function of the balance between capillary and magnetic pressures15-19 and of the geometric anisotropy of the FLIPS system. Several interesting functions at three different length scales are demonstrated: self-assembly of colloidal particles at the micrometre scale; regulated flow of liquid droplets at the millimetre scale; and switchable adhesion and friction, liquid pumping and removal of biofilms at the centimetre scale. We envision that FLIPS could be used as part of integrated control systems for the manipulation and transport of matter, thermal management, microfluidics and fouling-release materials.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl screen shot 2018 03 22 at 10.40.47 am
Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs

Spröwitz, A., Tuleu, A., Ajallooeian, M., Vespignani, M., Moeckel, R., Eckert, P., D’Haene, M., Degrave, J., Nordmann, A., Schrauwen, B., Steil, J., Ijspeert, A. J.

Frontiers in Robotics and AI, 5(67), June 2018, arXiv: 1803.06259 (article)

Abstract
We present Oncilla robot, a novel mobile, quadruped legged locomotion machine. This large-cat sized, 5.1 robot is one of a kind of a recent, bioinspired legged robot class designed with the capability of model-free locomotion control. Animal legged locomotion in rough terrain is clearly shaped by sensor feedback systems. Results with Oncilla robot show that agile and versatile locomotion is possible without sensory signals to some extend, and tracking becomes robust when feedback control is added (Ajaoolleian 2015). By incorporating mechanical and control blueprints inspired from animals, and by observing the resulting robot locomotion characteristics, we aim to understand the contribution of individual components. Legged robots have a wide mechanical and control design parameter space, and a unique potential as research tools to investigate principles of biomechanics and legged locomotion control. But the hardware and controller design can be a steep initial hurdle for academic research. To facilitate the easy start and development of legged robots, Oncilla-robot's blueprints are available through open-source. [...]

dlg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl selfsensing
Self-Sensing Paper Actuators Based on Graphite–Carbon Nanotube Hybrid Films

Morteza, A., Metin, S.

Advanced Science, pages: 1800239, May 2018 (article)

Abstract
Abstract Soft actuators have demonstrated potential in a range of applications, including soft robotics, artificial muscles, and biomimetic devices. However, the majority of current soft actuators suffer from the lack of real-time sensory feedback, prohibiting their effective sensing and multitask function. Here, a promising strategy is reported to design bilayer electrothermal actuators capable of simultaneous actuation and sensation (i.e., self-sensing actuators), merely through two input electric terminals. Decoupled electrothermal stimulation and strain sensation is achieved by the optimal combination of graphite microparticles and carbon nanotubes (CNTs) in the form of hybrid films. By finely tuning the charge transport properties of hybrid films, the signal-to-noise ratio (SNR) of self-sensing actuators is remarkably enhanced to over 66. As a result, self-sensing actuators can actively track their displacement and distinguish the touch of soft and hard objects.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl propultion. of helical m
Bioinspired microrobots

Palagi, S., Fischer, P.

Nature Reviews Materials, 3, pages: 113–124, May 2018 (article)

Abstract
Microorganisms can move in complex media, respond to the environment and self-organize. The field of microrobotics strives to achieve these functions in mobile robotic systems of sub-millimetre size. However, miniaturization of traditional robots and their control systems to the microscale is not a viable approach. A promising alternative strategy in developing microrobots is to implement sensing, actuation and control directly in the materials, thereby mimicking biological matter. In this Review, we discuss design principles and materials for the implementation of robotic functionalities in microrobots. We examine different biological locomotion strategies, and we discuss how they can be artificially recreated in magnetic microrobots and how soft materials improve control and performance. We show that smart, stimuli-responsive materials can act as on-board sensors and actuators and that ‘active matter’ enables autonomous motion, navigation and collective behaviours. Finally, we provide a critical outlook for the field of microrobotics and highlight the challenges that need to be overcome to realize sophisticated microrobots, which one day might rival biological machines.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl teaser results
Adversarial Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation

Ranjan, A., Jampani, V., Kim, K., Sun, D., Wulff, J., Black, M. J.

May 2018 (article)

Abstract
We address the unsupervised learning of several interconnected problems in low-level vision: single view depth prediction, camera motion estimation, optical flow and segmentation of a video into the static scene and moving regions. Our key insight is that these four fundamental vision problems are coupled and, consequently, learning to solve them together simplifies the problem because the solutions can reinforce each other by exploiting known geometric constraints. In order to model geometric constraints, we introduce Adversarial Collaboration, a framework that facilitates competition and collaboration between neural networks. We go beyond previous work by exploiting geometry more explicitly and segmenting the scene into static and moving regions. Adversarial Collaboration works much like expectation-maximization but with neural networks that act as adversaries, competing to explain pixels that correspond to static or moving regions, and as collaborators through a moderator that assigns pixels to be either static or independently moving. Our novel method integrates all these problems in a common framework and simultaneously reasons about the segmentation of the scene into moving objects and the static background, the camera motion, depth of the static scene structure, and the optical flow of moving objects. Our model is trained without any supervision and achieves state of the art results amongst unsupervised methods.

ps

pdf link (url) [BibTex]


no image
Assisting Movement Training and Execution With Visual and Haptic Feedback

Ewerton, M., Rother, D., Weimar, J., Kollegger, G., Wiemeyer, J., Peters, J., Maeda, G.

Frontiers in Neurorobotics, 12, May 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl screenshot 2018 05 18 16 38 40
Learning 3D Shape Completion under Weak Supervision

Stutz, D., Geiger, A.

Arxiv, May 2018 (article)

Abstract
We address the problem of 3D shape completion from sparse and noisy point clouds, a fundamental problem in computer vision and robotics. Recent approaches are either data-driven or learning-based: Data-driven approaches rely on a shape model whose parameters are optimized to fit the observations; Learning-based approaches, in contrast, avoid the expensive optimization step by learning to directly predict complete shapes from incomplete observations in a fully-supervised setting. However, full supervision is often not available in practice. In this work, we propose a weakly-supervised learning-based approach to 3D shape completion which neither requires slow optimization nor direct supervision. While we also learn a shape prior on synthetic data, we amortize, i.e., learn, maximum likelihood fitting using deep neural networks resulting in efficient shape completion without sacrificing accuracy. On synthetic benchmarks based on ShapeNet and ModelNet as well as on real robotics data from KITTI and Kinect, we demonstrate that the proposed amortized maximum likelihood approach is able to compete with fully supervised baselines and outperforms data-driven approaches, while requiring less supervision and being significantly faster.

avg

PDF Project Page Project Page [BibTex]


no image
Nonlinear decoding of a complex movie from the mammalian retina

Botella-Soler, V., Deny, S., Martius, G., Marre, O., Tkačik, G.

PLOS Computational Biology, 14(5):1-27, Public Library of Science, May 2018 (article)

Abstract
Author summary Neurons in the retina transform patterns of incoming light into sequences of neural spikes. We recorded from ∼100 neurons in the rat retina while it was stimulated with a complex movie. Using machine learning regression methods, we fit decoders to reconstruct the movie shown from the retinal output. We demonstrated that retinal code can only be read out with a low error if decoders make use of correlations between successive spikes emitted by individual neurons. These correlations can be used to ignore spontaneous spiking that would, otherwise, cause even the best linear decoders to “hallucinate” nonexistent stimuli. This work represents the first high resolution single-trial full movie reconstruction and suggests a new paradigm for separating spontaneous from stimulus-driven neural activity.

al

DOI [BibTex]

DOI [BibTex]


Thumb xl graphene silver hybrid
Graphene-silver hybrid devices for sensitive photodetection in the ultraviolet

Paria, D., Jeong, H., Vadakkumbatt, V., Deshpande, P., Fischer, P., Ghosh, A., Ghosh, A.

Nanoscale, 10, pages: 7685-7693, The Royal Society of Chemistry, April 2018 (article)

Abstract
The weak light-matter interaction in graphene can be enhanced with a number of strategies{,} among which sensitization with plasmonic nanostructures is particularly attractive. This has resulted in the development of graphene-plasmonic hybrid systems with strongly enhanced photodetection efficiencies in the visible and the IR{,} but none in the UV. Here{,} we describe a silver nanoparticle-graphene stacked optoelectronic device that shows strong enhancement of its photoresponse across the entire UV spectrum. The device fabrication strategy is scalable and modular. Self-assembly techniques are combined with physical shadow growth techniques to fabricate a regular large-area array of 50 nm silver nanoparticles onto which CVD graphene is transferred. The presence of the silver nanoparticles resulted in a plasmonically enhanced photoresponse as high as 3.2 A W-1 in the wavelength range from 330 nm to 450 nm. At lower wavelengths{,} close to the Van Hove singularity of the density of states in graphene{,} we measured an even higher responsivity of 14.5 A W-1 at 280 nm{,} which corresponds to a more than 10 000-fold enhancement over the photoresponse of native graphene.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl focus cover
Nanoparticles on the move for medicine

Fischer, P.

Physics World Focus on Nanotechnology, pages: 26028, (Editors: Margaret Harris), IOP Publishing Ltd and individual contributors, April 2018 (article)

Abstract
Peer Fischer outlines the prospects for creating “nanoswimmers” that can be steered through the body to deliver drugs directly to their targets Molecules don’t move very fast on their own. If they had to rely solely on diffusion – a slow and inefficient process linked to the Brownian motion of small particles and molecules in solution – then a protein mole­cule, for instance, would take around three weeks to travel a single centimetre down a nerve fibre. This is why active transport mechanisms exist in cells and in the human body: without them, all the processes of life would happen at a pace that would make snails look speedy.

pf

link (url) [BibTex]

link (url) [BibTex]


no image
Mixture of Attractors: A Novel Movement Primitive Representation for Learning Motor Skills From Demonstrations

Manschitz, S., Gienger, M., Kober, J., Peters, J.

IEEE Robotics and Automation Letters, 3(2):926-933, April 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl f1.large
Soft erythrocyte-based bacterial microswimmers for cargo delivery

Alapan, Y., Yasa, O., Schauer, O., Giltinan, J., Tabak, A. F., Sourjik, V., Sitti, M.

Science Robotics, 3(17), Science Robotics, April 2018 (article)

Abstract
Bacteria-propelled biohybrid microswimmers have recently shown to be able to actively transport and deliver cargos encapsulated into their synthetic constructs to specific regions locally. However, usage of synthetic materials as cargo carriers can result in inferior performance in load-carrying efficiency, biocompatibility, and biodegradability, impeding clinical translation of biohybrid microswimmers. Here, we report construction and external guidance of bacteria-driven microswimmers using red blood cells (RBCs; erythrocytes) as autologous cargo carriers for active and guided drug delivery. Multifunctional biohybrid microswimmers were fabricated by attachment of RBCs [loaded with anticancer doxorubicin drug molecules and superparamagnetic iron oxide nanoparticles (SPIONs)] to bioengineered motile bacteria, Escherichia coli MG1655, via biotin-avidin-biotin binding complex. Autonomous and on-board propulsion of biohybrid microswimmers was provided by bacteria, and their external magnetic guidance was enabled by SPIONs loaded into the RBCs. Furthermore, bacteria-driven RBC microswimmers displayed preserved deformability and attachment stability even after squeezing in microchannels smaller than their sizes, as in the case of bare RBCs. In addition, an on-demand light-activated hyperthermia termination switch was engineered for RBC microswimmers to control bacteria population after operations. RBCs, as biological and autologous cargo carriers in the biohybrid microswimmers, offer notable advantages in stability, deformability, biocompatibility, and biodegradability over synthetic cargo-carrier materials. The biohybrid microswimmer design presented here transforms RBCs from passive cargo carriers into active and guidable cargo carriers toward targeted drug and other cargo delivery applications in medicine.

pi

link (url) DOI Project Page Project Page [BibTex]


no image
Automatically Rating Trainee Skill at a Pediatric Laparoscopic Suturing Task

Oquendo, Y. A., Riddle, E. W., Hiller, D., Blinman, T. A., Kuchenbecker, K. J.

Surgical Endoscopy, 32(4):1840-1857, April 2018 (article)

hi

DOI [BibTex]

DOI [BibTex]


no image
Miniature soft robots – road to the clinic

Sitti, M.

Nature Reviews Materials, April 2018 (article)

Abstract
Soft small robots offer the opportunity to non-invasively access human tissue to perform medical operations and deliver drugs; however, challenges in materials design, biocompatibility and function control remain to be overcome for soft robots to reach the clinic.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic movement primitives under unknown system dynamics

Paraschos, A., Rueckert, E., Peters, J., Neumann, G.

Advanced Robotics, 32(6):297-310, April 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl nl 2018 001642 0005
Wrinkling Instability and Adhesion of a Highly Bendable Gallium Oxide Nanofilm Encapsulating a Liquid-Gallium Droplet

Yunusa, M., Amador, G. J., Drotlef, D., Sitti, M.

Nano Letters, March 2018, PMID: 29510627 (article)

Abstract
The wrinkling and interfacial adhesion mechanics of a gallium-oxide nanofilm encapsulating a liquid-gallium droplet are presented. The native oxide nanofilm provides mechanical stability by preventing the flow of the liquid metal. We show how a crumpled oxide skin a few nanometers thick behaves akin to a highly bendable elastic nanofilm under ambient conditions. Upon compression, a wrinkling instability emerges at the contact interface to relieve the applied stress. As the load is further increased, radial wrinkles evolve, and, eventually, the oxide nanofilm ruptures. The observed wrinkling closely resembles the instability experienced by nanofilms under axisymmetric loading, thus providing further insights into the behaviors of elastic nanofilms. Moreover, the mechanical attributes of the oxide skin enable high surface conformation by exhibiting liquid-like behavior. We measured an adhesion energy of 0.238 ± 0.008 J m–2 between a liquid-gallium droplet and smooth flat glass, which is close to the measurements of thin-sheet nanomaterials such as graphene on silicon dioxide.

pi

link (url) DOI Project Page [BibTex]


Thumb xl screenshot 2018 5 9 1803 01048 pdf
Magnetic-Visual Sensor Fusion-based Dense 3D Reconstruction and Localization for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Ornek, E. P., Araujo, H., Yanik, M. F., Sitti, M.

ArXiv e-prints, March 2018 (article)

Abstract
Reliable and real-time 3D reconstruction and localization functionality is a crucial prerequisite for the navigation of actively controlled capsule endoscopic robots as an emerging, minimally invasive diagnostic and therapeutic technology for use in the gastrointestinal (GI) tract. In this study, we propose a fully dense, non-rigidly deformable, strictly real-time, intraoperative map fusion approach for actively controlled endoscopic capsule robot applications which combines magnetic and vision-based localization, with non-rigid deformations based frame-to-model map fusion. The performance of the proposed method is demonstrated using four different ex-vivo porcine stomach models. Across different trajectories of varying speed and complexity, and four different endoscopic cameras, the root mean square surface reconstruction errors 1.58 to 2.17 cm.

pi

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screenshot 2018 5 9 1803 01047 pdf
Unsupervised Odometry and Depth Learning for Endoscopic Capsule Robots

Turan, M., Ornek, E. P., Ibrahimli, N., Giracoglu, C., Almalioglu, Y., Yanik, M. F., Sitti, M.

ArXiv e-prints, March 2018 (article)

Abstract
In the last decade, many medical companies and research groups have tried to convert passive capsule endoscopes as an emerging and minimally invasive diagnostic technology into actively steerable endoscopic capsule robots which will provide more intuitive disease detection, targeted drug delivery and biopsy-like operations in the gastrointestinal(GI) tract. In this study, we introduce a fully unsupervised, real-time odometry and depth learner for monocular endoscopic capsule robots. We establish the supervision by warping view sequences and assigning the re-projection minimization to the loss function, which we adopt in multi-view pose estimation and single-view depth estimation network. Detailed quantitative and qualitative analyses of the proposed framework performed on non-rigidly deformable ex-vivo porcine stomach datasets proves the effectiveness of the method in terms of motion estimation and depth recovery.

pi

link (url) [BibTex]

link (url) [BibTex]


Thumb xl mabi201700377 fig 0001 m
Self‐Folded Hydrogel Tubes for Implantable Muscular Tissue Scaffolds

Vannozzi, L., Yasa, I. C., Ceylan, H., Menciassi, A., Ricotti, L., Sitti, M.

Macromolecular Bioscience, (0):1700377, March 2018 (article)

Abstract
Abstract Programming materials with tunable physical and chemical interactions among its components pave the way of generating 3D functional active microsystems with various potential applications in tissue engineering, drug delivery, and soft robotics. Here, the development of a recapitulated fascicle‐like implantable muscle construct by programmed self‐folding of poly(ethylene glycol) diacrylate hydrogels is reported. The system comprises two stacked layers, each with differential swelling degrees, stiffnesses, and thicknesses in 2D, which folds into a 3D tube together. Inside the tubes, muscle cell adhesion and their spatial alignment are controlled. Both skeletal and cardiac muscle cells also exhibit high viability, and cardiac myocytes preserve their contractile function over the course of 7 d. Integration of biological cells with smart, shape‐changing materials could give rise to the development of new cellular constructs for hierarchical tissue assembly, drug testing platforms, and biohybrid actuators that can perform sophisticated tasks.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 41419 2018 379 fig1 html
Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review

Sheykhansari, S., Kozielski, K., Bill, J., Sitti, M., Gemmati, D., Zamboni, P., Singh, A. V.

Cell Death \& Disease, 9(3):348, March 2018 (article)

Abstract
The effect of redox metals such as iron and copper on multiple sclerosis and amyotrophic lateral sclerosis has been intensively studied. However, the origin of these disorders remains uncertain. This review article critically describes the physiology of redox metals that produce oxidative stress, which in turn leads to cascades of immunomodulatory alteration of neurons in multiple sclerosis and amyotrophic lateral sclerosis. Iron and copper overload has been well established in motor neurons of these diseases' lesions. On the other hand, the role of other metals like cadmium participating indirectly in the redox cascade of neurobiological mechanism is less studied. In the second part of this review, we focus on this less conspicuous correlation between cadmium as an inactive-redox metal and multiple sclerosis and amyotrophic lateral sclerosis, providing novel treatment modalities and approaches as future prospects.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl cancer cells
Cancer cells biomineralize ionic gold into nanoparticles-microplates via secreting defense proteins with specific gold-binding peptides

Singh, A. V., Jahnke, T., Kishore, V., Park, B., Batuwangala, M., Bill, J., Sitti, M.

Acta Biomaterialia, March 2018 (article)

Abstract
Cancer cells have the capacity to synthesize nanoparticles (NPs). The detailed mechanism of this process is not very well documented. We report the mechanism of biomineralization of aqueous gold chloride into NPs and microplates in the breast-cancer cell line MCF7. Spherical gold NPs are synthesized in these cells in the presence of serum in the culture media by the reduction of HAuCl4. In the absence of serum, the cells exhibit gold microplate formation through seed-mediate growth albeit slower reduction. The structural characteristics of the two types of NPs under different media conditions were confirmed using scanning electron microscopy (SEM); crystallinity and metallic properties were assessed with transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). Gold-reducing proteins, related to cell stress initiate the biomineralization of HAuCl4 in cells (under serum free conditions) as confirmed by infrared (IR) spectroscopy. MCF7 cells undergo irreversible replicative senescence when exposed to a high concentration of ionic gold and conversely remain in a dormant reversible quiescent state when exposed to a low gold concentration. The latter cellular state was achievable in the presence of the rho/ROCK inhibitor Y-27632. Proteomic analysis revealed consistent expression of specific proteins under serum and serum-free conditions. A high-throughput proteomic approach to screen gold-reducing proteins and peptide sequences was utilized and validated by quartz crystal microbalance with dissipation (QCM-D). Statement of significance Cancer cells are known to synthesize gold nanoparticles and microstructures, which are promising for bioimaging and other therapeutic applications. However, the detailed mechanism of such biomineralization process is not well understood yet. Herein, we demonstrate that cancer cells exposed to gold ions (grown in serum/serum-free conditions) secrete shock and stress-related proteins with specific gold-binding/reducing polypeptides. Cells undergo reversible senescence and can recover normal physiology when treated with the senescence inhibitor depending on culture condition. The use of mammalian cells as microincubators for synthesis of such particles could have potential influence on their uptake and biocompatibility. This study has important implications for in-situ reduction of ionic gold to anisotropic micro-nanostructures that could be used in-vivo clinical applications and tumor photothermal therapy.

pi

link (url) DOI [BibTex]


no image
An Algorithmic Perspective on Imitation Learning

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J., Abbeel, P., Peters, J.

Foundations and Trends in Robotics, 7(1-2):1-179, March 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Using Probabilistic Movement Primitives in Robotics

Paraschos, A., Daniel, C., Peters, J., Neumann, G.

Autonomous Robots, 42(3):529-551, March 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
A kernel-based approach to learning contact distributions for robot manipulation tasks

Kroemer, O., Leischnig, S., Luettgen, S., Peters, J.

Autonomous Robots, 42(3):581-600, March 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl singh et al 2018 advanced functional materials
Photogravitactic Microswimmers

Singh, D. P., Uspal, W. E., Popescu, M. N., Wilson, L. G., Fischer, P.

Advanced Functional Materials, pages: 1706660, Febuary 2018 (article)

Abstract
Abstract Phototactic microorganisms are commonly observed to respond to natural sunlight by swimming upward against gravity. This study demonstrates that synthetic photochemically active microswimmers can also swim against gravity. The particles initially sediment and, when illuminated at low light intensities exhibit wall‐bound states of motion near the bottom surface. Upon increasing the intensity of light, the artificial swimmers lift off from the wall and swim against gravity and away from the light source. This motion in the bulk has been further confirmed using holographic microscopy. A theoretical model is presented within the framework of self‐diffusiophoresis, which allows to unequivocally identify the photochemical activity and the phototactic response as key mechanisms in the observed phenomenology. Since the lift‐off threshold intensity depends on the particle size, it can be exploited to selectively address particles with the same density from a polydisperse mixture of active particles and move them in or out of the boundary region. This study provides a simple design strategy to fabricate artificial microswimmers whose two‐ or three‐dimensional swimming behavior can be controlled with light.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl matuschek et al 2018 small
Chiral Plasmonic Hydrogen Sensors

Matuschek, M., Singh, D. P., Hyeon-Ho, J., Nesterov, M., Weiss, T., Fischer, P., Neubrech, F., Na Liu, L.

Small, 14(7):1702990, Febuary 2018 (article)

Abstract
Abstract In this article, a chiral plasmonic hydrogen‐sensing platform using palladium‐based nanohelices is demonstrated. Such 3D chiral nanostructures fabricated by nanoglancing angle deposition exhibit strong circular dichroism both experimentally and theoretically. The chiroptical properties of the palladium nanohelices are altered upon hydrogen uptake and sensitively depend on the hydrogen concentration. Such properties are well suited for remote and spark‐free hydrogen sensing in the flammable range. Hysteresis is reduced, when an increasing amount of gold is utilized in the palladium‐gold hybrid helices. As a result, the linearity of the circular dichroism in response to hydrogen is significantly improved. The chiral plasmonic sensor scheme is of potential interest for hydrogen‐sensing applications, where good linearity and high sensitivity are required.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl screenshot 2018 5 9 1802 00475 pdf
Thermocapillary-driven fluid flow within microchannels

Amador, G. J., Tabak, A. F., Ren, Z., Alapan, Y., Yasa, O., Sitti, M.

ArXiv e-prints, Febuary 2018 (article)

Abstract
Surface tension gradients induce Marangoni flow, which may be exploited for fluid transport. At the micrometer scale, these surface-driven flows can be more significant than those driven by pressure. By introducing fluid-fluid interfaces on the walls of microfluidic channels, we use surface tension gradients to drive bulk fluid flows. The gradients are specifically induced through thermal energy, exploiting the temperature dependence of a fluid-fluid interface to generate thermocapillary flow. In this report, we provide the design concept for a biocompatible, thermocapillary microchannel capable of being powered by solar irradiation. Using temperature gradients on the order of degrees Celsius per centimeter, we achieve fluid velocities on the order of millimeters per second. Following experimental observations, fluid dynamic models, and numerical simulation, we find that the fluid velocity is linearly proportional to the provided temperature gradient, enabling full control of the fluid flow within the microchannels.

pi

link (url) Project Page [BibTex]


Thumb xl 138 2017 905 fig1 html
Sparse-then-dense alignment-based 3D map reconstruction method for endoscopic capsule robots

Turan, M., Pilavci, Y. Y., Ganiyusufoglu, I., Araujo, H., Konukoglu, E., Sitti, M.

Machine Vision and Applications, 29(2):345-359, Febuary 2018 (article)

Abstract
Despite significant progress achieved in the last decade to convert passive capsule endoscopes to actively controllable robots, robotic capsule endoscopy still has some challenges. In particular, a fully dense three-dimensional (3D) map reconstruction of the explored organ remains an unsolved problem. Such a dense map would help doctors detect the locations and sizes of the diseased areas more reliably, resulting in more accurate diagnoses. In this study, we propose a comprehensive medical 3D reconstruction method for endoscopic capsule robots, which is built in a modular fashion including preprocessing, keyframe selection, sparse-then-dense alignment-based pose estimation, bundle fusion, and shading-based 3D reconstruction. A detailed quantitative analysis is performed using a non-rigid esophagus gastroduodenoscopy simulator, four different endoscopic cameras, a magnetically activated soft capsule robot, a sub-millimeter precise optical motion tracker, and a fine-scale 3D optical scanner, whereas qualitative ex-vivo experiments are performed on a porcine pig stomach. To the best of our knowledge, this study is the first complete endoscopic 3D map reconstruction approach containing all of the necessary functionalities for a therapeutically relevant 3D map reconstruction.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl plos1
Body size estimation of self and others in females varying in BMI

Thaler, A., Geuss, M. N., Mölbert, S. C., Giel, K. E., Streuber, S., Romero, J., Black, M. J., Mohler, B. J.

PLoS ONE, 13(2), Febuary 2018 (article)

Abstract
Previous literature suggests that a disturbed ability to accurately identify own body size may contribute to overweight. Here, we investigated the influence of personal body size, indexed by body mass index (BMI), on body size estimation in a non-clinical population of females varying in BMI. We attempted to disentangle general biases in body size estimates and attitudinal influences by manipulating whether participants believed the body stimuli (personalized avatars with realistic weight variations) represented their own body or that of another person. Our results show that the accuracy of own body size estimation is predicted by personal BMI, such that participants with lower BMI underestimated their body size and participants with higher BMI overestimated their body size. Further, participants with higher BMI were less likely to notice the same percentage of weight gain than participants with lower BMI. Importantly, these results were only apparent when participants were judging a virtual body that was their own identity (Experiment 1), but not when they estimated the size of a body with another identity and the same underlying body shape (Experiment 2a). The different influences of BMI on accuracy of body size estimation and sensitivity to weight change for self and other identity suggests that effects of BMI on visual body size estimation are self-specific and not generalizable to other bodies.

ps

pdf DOI [BibTex]


Thumb xl khali1 2801793 large
Independent Actuation of Two-Tailed Microrobots

Khalil, I. S. M., Tabak, A. F., Hamed, Y., Tawakol, M., Klingner, A., Gohary, N. E., Mizaikoff, B., Sitti, M.

IEEE Robotics and Automation Letters, 3(3):1703-1710, Febuary 2018 (article)

Abstract
A soft two-tailed microrobot in low Reynolds number fluids does not achieve forward locomotion by identical tails regardless to its wiggling frequency. If the tails are nonidentical, zero forward locomotion is also observed at specific oscillation frequencies (which we refer to as the reversal frequencies), as the propulsive forces imparted to the fluid by each tail are almost equal in magnitude and opposite in direction. We find distinct reversal frequencies for the two-tailed microrobots based on their tail length ratio. At these frequencies, the microrobot achieves negligible net displacement under the influence of a periodic magnetic field. This observation allows us to fabricate groups of microrobots with tail length ratio of 1.24 ± 0.11, 1.48 ± 0.08, and 1.71 ± 0.09. We demonstrate selective actuation of microrobots based on prior characterization of their reversal frequencies. We also implement simultaneous flagellar propulsion of two microrobots and show that they can be controlled to swim along the same direction and opposite to each other using common periodic magnetic fields. In addition, independent motion control of two microrobots is achieved toward two different reference positions with average steady-state error of 110.1 ± 91.8 μm and 146.9 ± 105.9 μm.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]