Header logo is

Institute Departments

Autonomous Motion

The Autonomous Motion Department has its focus on research in intelligent systems that can move, perceive, and learn from experiences.

We are interested in understanding, how autonomous movement systems can bootstrap themselves into competent behavior by starting from a relatively simple set of algorithms and pre-structuring, and then learning from interacting with the environment. Using instructions from a teacher to get started can add useful prior information. Performing trial and error learning to improve movement skills and perceptual skills is another domain of our research. We are interested in investigating such perception-action-learning loops in biological systems and robotic systems, which can range in scale from nano systems (cells, nano-robots) to macro systems (humans, and humanoid robots).

Empirical Inference

The problems studied in the department can be subsumed under the heading of empirical inference. This term refers to inference performed on the basis of empirical data.

The type of inference can vary, including for instance inductive learning (estimation of models such as functional dependencies that generalize to novel data sampled from the same underlying distribution), or the inference of causal structures from statistical data (leading to models that provide insight into the underlying mechanisms, and make predictions about the effect of interventions). Likewise, the type of empirical data can vary, ranging from sparse experimental measurements (e. g., microarray data) to visual patterns. Our department is conducting theoretical, algorithmic, and experimental studies to try and understand the problem of empirical inference.

Haptic Intelligence

We study touch-based interaction, invent new haptic interfaces, and play with robots.

Have you noticed that computers can show beautiful images and play clear sounds, but they don't let you physically touch digital items? Similarly, most robots are surprisingly unskilled at physically interacting with the real world and with people. Led by Katherine J. Kuchenbecker, the MPI-IS Haptic Intelligence department aims to elevate and formalize our understanding of touch cues while simultaneously discovering new opportunities for their use in interactions between humans, computers, and machines. We leverage scientific knowledge about the sense of touch to create haptic interfaces that enable a user to interact with virtual objects and distant environments as though they were real and within reach.  One key insight in this endeavor has been that tactile cues, such as high-frequency tool vibrations and... Read More

Modern Magnetic Systems

Magnetic systems play a vital role in our everyday life. They are important in many modern technologies, including magnetic storage devices, sensors, hybrid motors and energy conservation products. Advances in modern preparation techniques enable the production of artificial functional materials at the atomic scale. Magnetism in these often low dimensional materials show unexpected and surprising phenomena, which are the driving force for basic research in solid state physics and have potential for technological applications. Our department focuses on the investigation on nanomagnetic structures in the nanometer and picosecond time scale. We develop and apply advanced characterization and preparation techniques to get novel in­sight into the microstructure property relation of nanoscale magnetic systems.

Perceiving Systems

We combine research on computer vision, computer graphics, and machine learning to teach computers to see and understand humans and their behavior.

Perceiving Systems is a leading Computer Vision research group in Tübingen, Germany. We view computer vision as the process of inferring the causes behind the images that we observe; that is, we want to infer the story behind the picture. The most interesting stories involve people. Consequently, our research focuses on understanding humans and their interactions with each other and with the 3D world. We use Machine Learning to train computers to recover human behavior in fine detail, including face and hand movement. We also recover the 3D structure of the world, its motion, and the objects in it so that human movement can be placed in context. By capturing human motion, and modeling behavior, we contribute realistic avatars to Computer Graphics. To have an impact beyond academia we develop applications in medicine and psychology, spin off companies Read More

Physical Intelligence

The researchers working in the Physical Intelligence Department aim to understand the principles of design, locomotion, control, perception, and learning of small-scale mobile robots.

The Physical Intelligence Department, founded by Metin Sitti, started its research activities in the fall of 2014 at the Max Planck Institute for Intelligent Systems. Our department aims to understand the principles of design, locomotion, control, perception, and learning of single and large numbers of small-scale mobile robots made of smart and soft materials as our physical intelligence platforms. The intelligence of such robots would dominantly come from their physical design, materials, and control more than, or in addition to, their computational perception, learning, and control.  Such physical intelligence methods are indispensable at the small scale, especially since small-scale mobile robots are inherently limited in computation, actuation, powering, perception, and control capabilities.

Theory of Inhomogeneous Condensed Matter

The research goal of the department is directed towards relating macroscopic properties of condensed matter to the collective behavior of the underlying microscopic degrees of freedom. Based on Statistical Physics the research is focused on spatially inhomogeneous systems on mesoscopic length scales. These systems exhibit a wealth of phenomena and can generate states of condensed matter which cannot form in bulk materials, offering perspectives for useful applications.