Header logo is
Institute Talks

Less-artificial intelligence

  • 18 June 2018 • 15:00 16:00
  • Prof. Dr. Matthias Bethge
  • MPI-IS Stuttgart - 2R04

Haptic Engineering and Science at Multiple Scales

  • 20 June 2018 • 11:00 12:00
  • Yon Visell, PhD
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

I will describe recent research in my lab on haptics and robotics. It has been a longstanding challenge to realize engineering systems that can match the amazing perceptual and motor feats of biological systems for touch, including the human hand. Some of the difficulties of meeting this objective can be traced to our limited understanding of the mechanics, and to the high dimensionality of the signals, and to the multiple length and time scales - physical regimes - involved. An additional source of richness and complication arises from the sensitive dependence of what we feel on what we do, i.e. on the tight coupling between touch-elicited mechanical signals, object contacts, and actions. I will describe research in my lab that has aimed at addressing these challenges, and will explain how the results are guiding the development of new technologies for haptics, wearable computing, and robotics.

Organizers: Katherine Kuchenbecker

Imitation of Human Motion Planning

  • 29 June 2018 • 12:00 12:45
  • Jim Mainprice
  • N3.022 (Aquarium)

Humans act upon their environment through motion, the ability to plan their movements is therefore an essential component of their autonomy. In recent decades, motion planning has been widely studied in robotics and computer graphics. Nevertheless robots still fail to achieve human reactivity and coordination. The need for more efficient motion planning algorithms has been present through out my own research on "human-aware" motion planning, which aims to take the surroundings humans explicitly into account. I believe imitation learning is the key to this particular problem as it allows to learn both, new motion skills and predictive models, two capabilities that are at the heart of "human-aware" robots while simultaneously holding the promise of faster and more reactive motion generation. In this talk I will present my work in this direction.

Learning Control for Intelligent Physical Systems

  • 13 July 2018 • 14:15 14:45
  • Dr. Sebastian Trimpe
  • MPI-IS, Stuttgart, Lecture Hall 2 D5

Modern technology allows us to collect, process, and share more data than ever before. This data revolution opens up new ways to design control and learning algorithms, which will form the algorithmic foundation for future intelligent systems that shall act autonomously in the physical world. Starting from a discussion of the special challenges when combining machine learning and control, I will present some of our recent research in this exciting area. Using the example of the Apollo robot learning to balance a stick in its hand, I will explain how intelligent agents can learn new behavior from just a few experimental trails. I will also discuss the need for theoretical guarantees in learning-based control, and how we can obtain them by combining learning and control theory.

Organizers: Katherine Kuchenbecker Ildikó Papp-Wiedmann Matthias Tröndle Claudia Daefler

Household Assistants: the Path from the Care-o-bot Vision to First Products

  • 13 July 2018 • 14:45 15:15
  • Dr. Martin Hägele
  • MPI-IS, Stuttgart, Lecture Hall 2 D5

In 1995 Fraunhofer IPA embarked on a mission towards designing a personal robot assistant for everyday tasks. In the following years Care-O-bot developed into a long-term experiment for exploring and demonstrating new robot technologies and future product visions. The recent fourth generation of the Care-O-bot, introduced in 2014 aimed at designing an integrated system which addressed a number of innovations such as modularity, “low-cost” by making use of new manufacturing processes, and advanced human-user interaction. Some 15 systems were built and the intellectual property (IP) generated by over 20 years of research was recently licensed to a start-up. The presentation will review the path from an experimental platform for building up expertise in various robotic disciplines to recent pilot applications based on the now commercial Care-O-bot hardware.

Organizers: Katherine Kuchenbecker Ildikó Papp-Wiedmann Matthias Tröndle Claudia Daefler

The Critical Role of Atoms at Surfaces and Interfaces: Do we really have control? Can we?

  • 13 July 2018 • 15:45 16:15
  • Prof. Dr. Dawn Bonnell
  • MPI-IS, Stuttgart, Lecture Hall 2 D5

With the ubiquity of catalyzed reactions in manufacturing, the emergence of the device laden internet of things, and global challenges with respect to water and energy, it has never been more important to understand atomic interactions in the functional materials that can provide solutions in these spaces.

Organizers: Katherine Kuchenbecker Ildikó Papp-Wiedmann Matthias Tröndle Claudia Daefler

Interactive Visualization – A Key Discipline for Big Data Analysis

  • 13 July 2018 • 15:00 15:30
  • Prof. Dr. Thomas Ertl
  • MPI-IS, Stuttgart, Lecture Hall 2 D5

Big Data has become the general term relating to the benefits and threats which result from the huge amount of data collected in all parts of society. While data acquisition, storage and access are relevant technical aspects, the analysis of the collected data turns out to be at the core of the Big Data challenge. Automatic data mining and information retrieval techniques have made much progress but many application scenarios remain in which the human in the loop plays an essential role. Consequently, interactive visualization techniques have become a key discipline of Big Data analysis and the field is reaching out to many new application domains. This talk will give examples from current visualization research projects at the University of Stuttgart demonstrating the thematic breadth of application scenarios and the technical depth of the employed methods. We will cover advances in scientific visualization of fields and particles, visual analytics of document collections and movement patterns as well as cognitive aspects.

Organizers: Katherine Kuchenbecker Ildikó Papp-Wiedmann Matthias Tröndle Claudia Daefler

  • Azzurra Ruggeri

How do young children learn so much about the world, and so efficiently? This talk presents the recent studies investigating theoretically and empirically how children actively seek information in their physical and social environments as evidence to test and dynamically revise their hypotheses and theories over time. In particular, it will focus on how children adapt their active learning strategies. such as question-asking and explorative behavior, in response to the task characteristics, to the statistical structure of the hypothesis space, and to the feedback received. Such adaptiveness and flexibility is crucial to achieve efficiency in situations of uncertainty, when testing alternative hypotheses, making decisions, drawing causal inferences and solving categorization tasks.

Organizers: Philipp Hennig Georg Martius

Machines that learn to see and move

  • 12 July 2017 • 17:00 18:00
  • Prof. Andrew Blake
  • MPI-IS, ground floor seminar room, N0.002

Neural networks have taken the world of computing in general and AI in particular by storm. But in the future, AI will need to revisit generative models. There are several reasons for this – system robustness, precision, transparency, and the high cost of labelling data. This is particularly true of perceptual AI, as needed for autonomous vehicles, where also the need for simulators and the need to confront novel situations, also will demand generative, probabilistic models.

Organizers: Bernhard Schölkopf Michael Black Stefan Schaal

Deep Learning for stereo matching and related tasks

  • 12 July 2017 • 11:00 12:00
  • Matteo Poggi
  • PS Seminar Room (N3.022)

Recently, deep learning proved to be successful also on low level vision tasks such as stereo matching. Another recent trend in this latter field is represented by confidence measures, with increasing effectiveness when coupled with random forest classifiers or CNNs. Despite their excellent accuracy in outliers detection, few other applications rely on them. In the first part of the talk, we'll take a look at the latest proposal in terms of confidence measures for stereo matching, as well as at some novel methodologies exploiting these very accurate cues. In the second part, we'll talk about GC-net, a deep network currently representing the state-of-the-art on the KITTI datasets, and its extension to motion stereo processing.

Organizers: Yiyi Liao

Soft bioelectronics: Materials and Technology

  • 11 July 2017 • 14:00 15:20
  • Prof. Stéphanie Lacour
  • Lecture hall on the ground floor, N0.002 (broadcasted from Stuttgart)

Bioelectronics integrates principles of electrical engineering and materials science to biology, medicine and ultimately health. Soft bioelectronics focus on designing and manufacturing electronic devices with mechanical properties close to those of the host biological tissue so that long-term reliability and minimal perturbation are induced in vivo and/or truly wearable systems become possible. We illustrate the potential of this soft technology with examples ranging from prosthetic tactile skins to soft multimodal neural implants.

Organizers: Diana Rebmann

  • Chris Bauch
  • AGBS seminar room (N4)

Vaccine refusal can lead to outbreaks of previously eradicated diseases and is an increasing problem worldwide. Vaccinating decisions exemplify a complex, coupled system where vaccinating behavior and disease dynamics influence one another. Complex systems often exhibit characteristic dynamics near a tipping point to a new dynamical regime. For instance, critical slowing down -- the tendency for a system to start `wobbling'-- can increase close to a tipping point. We used a linear support vector machine to classify the sentiment of geo-located United States and California tweets concerning measles vaccination from 2011 to 2016. We also extracted data on internet searches on measles from Google Trends. We found evidence for critical slowing down in both datasets in the years before and after the 2014-15 Disneyland, California measles outbreak, suggesting that the population approached a tipping point corresponding to widespread vaccine refusal, but then receded from the tipping point in the face of the outbreak. A differential equation model of coupled behaviour-disease dynamics is shown to illustrate the same patterns. We conclude that studying critical phenomena in online social media data can help us develop analytical tools based on dynamical systems theory to identify populations at heightened risk of widespread vaccine refusal.

Organizers: Diana Rebmann

  • Prof. Peer Fischer
  • MPI-IS, ground floor seminar room, room no. N0.002

This talk will look at hardware-based means of assembling, controlling and driving systems at the smallest of scales, including those that can become autonomous. I will show that insights from physics, chemistry and material engineering can be used to permit the simplification and miniaturization of otherwise bulky systems and that this can give rise to new technologies. One of the technologies we have invented may also permit the development of new imaging devices.

Organizers: Jane Walters Julia Braun

Multi-task Learning with Labeled and Unlabeled Tasks

  • 05 July 2017 • 14:30 15:45
  • Anastasia Pentina
  • N2 Seminar Room (changed location)

In multi-task learning, a learner is given a collection of prediction tasks and needs to solve all of them. In contrast to previous work, that required that annotated training data must be available for all tasks, I will talk about a new setting, in which for some tasks, potentially most of them, only unlabeled training data is available. Consequently, to solve all tasks, information must be transfered between tasks with labels and tasks without labels. Focussing on an instance-based transfer method I will consider two variants of this setting: when the set of labeled tasks is fixed, and when it can be actively selected by the learner. I will discuss a generalization bound that covers both scenarios and an algorithm, that follows from it, for making the choice of labeled tasks (in the active case) and for transferring information between the tasks in a principled way. I will also show results of some experiments that illustrate the effectiveness of the algorithm.

Organizers: Georg Martius

Some parallels between classical and kernel quadrature

  • 04 July 2017 • 11:00 12:15
  • Toni Karvonen
  • S2 seminar room

This talk draws three parallels between classical algebraic quadrature rules, that are exact for polynomials of low degree, and kernel (or Bayesian) quadrature rules: i) Computational efficiency. Construction of scalable multivariate algebraic quadrature rules is challenging whereas kernel quadrature necessitates solving a linear system of equations, quickly becoming computationally prohibitive. Fully symmetric sets and Smolyak sparse grids can be used to solve both problems. ii) Derivatives and optimal rules. Algebraic degree of a Gaussian quadrature rule cannot be improved by adding derivative evaluations of the integrand. This holds for optimal kernel quadrature rules in the sense that derivatives are of no help in minimising the worst-case error (or posterior integral variance). iii) Positivity of the weights. Essentially as a consequence of the preceding property, both the Gaussian and optimal kernel quadrature rules have positive weights (i.e., they are positive linear functionals).

Organizers: Alexandra Gessner

Causal Macro Variables

IS Colloquium
  • 03 July 2017 • 11:15 12:15
  • Frederick Eberhardt
  • Max Planck House Lecture Hall

Standard methods of causal discovery take as input a statistical data set of measurements of well-defined causal variables. The goal is then to determine the causal relations among these variables. But how are these causal variables identified or constructed in the first place? Often we have sensor level data but assume that the relevant causal interactions occur at a higher scale of aggregation. Sometimes we only have aggregate measurements of causal interactions at a finer scale. I will motivate the general problem of causal discovery and present recent work on a framework and method for the construction and identification of causal macro-variables that ensures that the resulting causal variables have well-defined intervention distributions. Time permitting, I will show an application of this approach to large scale climate data, for which we were able to identify the macro-phenomenon of El Nino using an unsupervised method on micro-level measurements of the sea surface temperature and wind speeds over the equatorial Pacific.

Organizers: Sebastian Weichwald

Recent Projects on Lifelong Learning

  • 30 June 2017 • 15:30 16:45
  • Christoph Lampert
  • N2 Seminar Room

Organizers: Georg Martius