Institute Talks

Frederick Eberhardt - TBA

IS Colloquium
  • 03 July 2017 • 11:15 12:15
  • Frederick Eberhardt
  • Max Planck House Lecture Hall

Organizers: Sebastian Weichwald

Images of planets orbiting other stars

  • 01 March 2016 • 11:00 12:00
  • Sascha Quantz
  • AGBS Seminar Room

The detection and characterization of planets orbiting other stars than the Sun, i.e., so-called extrasolar planets, is one of the fastest growing and most vibrant research fields in modern astrophysics. In the last 25 years, more than 5400 extrasolar planets and planet candidates were revealed, but the vast majority of these objects was detected with indirect techniques, where the existence of the planet is inferred from periodic changes in the light coming from the central star. No photons from the planets themselves are detected. In this talk, however, I will focus on the direct detection of extrasolar planets. On the one hand I will describe the main challenges that have to be overcome in order to image planets around other stars. In addition to using the world’s largest telescopes and optimized cameras it was realized in last few years that by applying advanced image processing techniques significant sensitivity gains can be achieved. On the other hand I will demonstrate what can be learned if one is successful in “taking a picture” of an extrasolar planet. After all, there must be good scientific reasons and a strong motivation why the direct detection of extrasolar planets is one of the key science drivers for current and future projects on major ground- and space-based telescopes.

Organizers: Diana Rebmann

Interaction of Science and Art

  • 24 February 2016 • 11:30 12:30
  • Helga Griffiths
  • MRZ Seminar room

In general Helga Griffiths is a Multi-Sense-Artist working on the intersection of science and art. She has been working for over 20 years on the integration of various sensory stimuli into her “multi-sense” installations. Typical for her work is to produce a sensory experience to transcend conventional boundaries of perception.

Organizers: Emma-Jayne Holderness

  • Felix Berkenkamp
  • AMD Seminar Room (Paul-Ehrlich-Str. 15, 1rst floor)

Bayesian optimization is a powerful tool that has been successfully used to automatically optimize the parameters of a fixed control policy. It has many desirable properties, such as data-efficiently and being able to handle noisy measurements. However, standard Bayesian optimization does not consider any constraints imposed by the real system, which limits its applications to highly controlled environments. In this talk, I will introduce an extension of this framework, which additionally considers multiple safety constraints during the optimization process. This method enables safe parameter optimization by only evaluating parameters that fulfill all safety constraints with high probability. I will show several experiments on a quadrotor vehicle which demonstrate the method. Lastly, I will briefly talk about how the ideas behind safe Bayesian optimization can be used to safely explore unknown environments (MDPs).

Organizers: Sebastian Trimpe

  • Aldo Faisal
  • MPH Lecture Hall

Our research questions are centred on a basic characteristic of human brains: variability in their behaviour and their underlying meaning for cognitive mechanisms. Such variability is emerging as a key ingredient in understanding biological principles (Faisal, Selen & Wolpert, 2008, Nature Rev Neurosci) and yet lacks adequate quantitative and computational methods for description and analysis. Crucially, we find that biological and behavioural variability contains important information that our brain and our technology can make us of (instead of just averaging it away): Using advanced body sensor networks, we measured eye-movements, full-body and hand kinematics of humans living in a studio flat and are going to present some insightful results on motor control and visual attention that suggest that the control of behaviour "in-the-wild" is predictably different ways than what we measure "in-the-lab". The results have implications for robotics, prosthetics and neuroscience.

Organizers: Matthias Hohmann

Probabilistic Numerics for Differential Equations

IS Colloquium
  • 11 January 2016 • 11:15 12:15
  • Tim Sullivan

Beginning with a seminal paper of Diaconis (1988), the aim of so-called "probabilistic numerics" is to compute probabilistic solutions to deterministic problems arising in numerical analysis by casting them as statistical inference problems. For example, numerical integration of a deterministic function can be seen as the integration of an unknown/random function, with evaluations of the integrand at the integration nodes proving partial information about the integrand. Advantages offered by this viewpoint include: access to the Bayesian representation of prior and posterior uncertainties; better propagation of uncertainty through hierarchical systems than simple worst-case error bounds; and appropriate accounting for numerical truncation and round-off error in inverse problems, so that the replicability of deterministic simulations is not confused with their accuracy, thereby yielding an inappropriately concentrated Bayesian posterior. This talk will describe recent work on probabilistic numerical solvers for ordinary and partial differential equations, including their theoretical construction, convergence rates, and applications to forward and inverse problems. Joint work with Andrew Stuart (Warwick).

Organizers: Philipp Hennig

  • Jun Nakanishi
  • TTR, AMD Seminar Room (first floor)

Understanding the principles of natural movement generation has been and continues to be one of the most interesting and important open problems in the fields of robotics and neural control of movement. In this talk, I introduce an overview of our previous work on the control of dynamic movements in robotic systems towards the goal of control design principles and understanding of motion generation. Our research has focused in the fields of dynamical systems theory, adaptive and optimal control and statistical learning, and their application to robotics towards achieving dynamically dexterous behavior in robotic systems. First, our studies on dynamical systems based task encoding in robot brachiation, movement primitives for imitation learning, and oscillator based biped locomotion control will be presented. Then, our recent work on optimal control of robotic systems with variable stiffness actuation will be introduced towards the aim of achieving highly dynamic movements by exploiting the natural dynamics of the system. Finally, our new humanoid robot H-1 at TUM-ICS will be introduced.

Organizers: Ludovic Righetti

  • Alexander Sprowitz
  • TTR, AMD Seminar Room (first floor)

The current performance gap between legged animals and legged robots is large. Animals can reach high locomotion speed in complex terrain, or run at a low cost of transport. They are able to rapidly sense their environment, process sensor data, learn and plan locomotion strategies, and execute feedforward and feedback controlled locomotion patterns fluently on the fly. Animals use hardware that has, compared to the latest man-made actuators, electronics, and processors, relatively low bandwidth, medium power density, and low speed. The most common approach to legged robot locomotion is still assuming rigid linkage hardware, high torque actuators, and model based control algorithms with high bandwidth and high gain feedback mechanisms. State of the art robotic demonstrations such as the 2015 DARPA challenge showed that seemingly trivial locomotion tasks such as level walking, or walking over soft sand still stops most of our biped and quadruped robots. This talk focuses on an alternative class of legged robots and control algorithms designed and implemented on several quadruped and biped platforms, for a new generation of legged robotic systems. Biomechanical blueprints inspired by nature, and mechanisms from locomotion neurocontrol were designed, tested, and can be compared to their biological counterparts. We focus on hardware and controllers that allow comparably cheap robotics, in terms of computation, control, and mechanical complexity. Our goal are highly dynamic, robust legged systems with low weight and inertia, relatively low mechanical complexity and cost of transport, and little computational demands for standard locomotion tasks. Ideally, such system can also be used as testing platforms to explain not yet understood biomechanical and neurocontrol aspects of animals.

Organizers: Ludovic Righetti

  • Gernot Müller-Putz
  • MPH Lecture Hall

More than half of the persons with spinal cord injuries (SCI) are suffering from impairments of both hands, which results in a tremendous decrease of quality of life and represents a major barrier for inclusion in society. Functional restoration is possible with neuroprostheses (NPs) based on functional electrical stimulation (FES). A Brain-Computer Interface provides a means of control for such neuroprosthetics since users have limited abilities to use traditional assistive devices. This talk presents our early research on BCI-based NP control based on motor imagery, discusses hybrid BCI solutions and shows our work and effort on movement trajectory decoding. An outlook to future BCI applications will conclude this talk.

Organizers: Moritz Grosse-Wentrup

Making Robots Learn

IS Colloquium
  • 13 November 2015 • 11:30 12:30
  • Prof. Pieter Abbeel
  • Max Planck House Tübingen, Lecture Hall

Programming robots remains notoriously difficult. Equipping robots with the ability to learn would by-pass the need for what often ends up being time-consuming task specific programming. In this talk I will describe the ideas behind two promising types of robot learning: First I will discuss apprenticeship learning, in which robots learn from human demonstrations, and which has enabled autonomous helicopter aerobatics, knot tying, basic suturing, and cloth manipulation. Then I will discuss deep reinforcement learning, in which robots learn through their own trial and error, and which has enabled learning locomotion as well as a range of assembly and manipulation tasks.

Organizers: Stefan Schaal

Understanding Plants and Animals

  • 10 November 2015 • 11:00 12:00
  • Prof. David W. Jacobs
  • MRZ seminar room

I will describe a series of work that aims to automatically understand images of animals and plants. I will begin by describing recent work that uses Bounded Distortion matching to model pose variation in animals. Using a generic 3D model of an animal and multiple images of different individuals in various poses, we construct a model that captures the way in which the animal articulates. This is done by solving for the pose of the template that matches each image while simultaneously solving for the stiffness of each tetrahedron of the model. We minimize an L1 norm on stiffness, producing a model that bends easily at joints, but that captures the rigidity of other parts of the animal. We show that this model can determine the pose of animals such as cats in a wide range of positions. Bounded distortion forms a core part of the matching between 3D model and 2D images. I will also show that Bounded Distortion can be used for 2D matching. We use it to find corresponding features in images very robustly, optimizing an L0 distance to maximize the number of matched features, while bounding the amount of non-rigid variation between the images. We demonstrate the use of this approach in matching non-rigid objects and in wide-baseline matching of features. I will also give an overview of a method for identifying the parts of animals in images, to produce an automatic correspondence between images of animals. Building on these correspondences we develop methods for recognizing the species of a bird, or the breed of a dog. We use these recognition algorithms to construct electronic field guides. I will describe three field guides that we have published, Birdsnap, Dogsnap, and Leafsnap. Leafsnap identifies the species of trees using shape-based matching to compare images of leaves. Leafsnap has been downloaded by over 1.5 million users, and has been used in schools and in biodiversity studies. This work has been done in collaboration with many University of Maryland students and with groups at Columbia University, the Smithsonian Institution National Museum of Natural History, and the Weizmann Institute.

Organizers: Stephan Streuber