140 results (BibTeX)

2003


Specular flow and the perception of surface reflectance

Roth, S., Domini, F., Black, M. J.

Journal of Vision, 3 (9): 413a, 2003 (conference)

ps

abstract poster [BibTex]

2003


abstract poster [BibTex]


A Gaussian mixture model for the motor cortical coding of hand motion

Wu, W., Mumford, D., Black, M. J., Gao, Y., Bienenstock, E., Donoghue, J.

Neural Control of Movement, Santa Barbara, CA, April 2003 (conference)

ps

abstract [BibTex]

abstract [BibTex]


Accuracy of manual spike sorting: Results for the Utah intracortical array

Wood, F., Fellows, M., Vargas-Irwin, C., Black, M. J., Donoghue, J.

Program No. 279.2. 2003, Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2003, Online (conference)

ps

abstract [BibTex]

abstract [BibTex]


Thumb md bildschirmfoto 2013 01 15 um 09.48.31
Neural decoding of cursor motion using a Kalman filter

(Nominated: Best student paper)

Wu, W., Black, M. J., Gao, Y., Bienenstock, E., Serruya, M., Shaikhouni, A., Donoghue, J.

In Advances in Neural Information Processing Systems 15, pages: 133-140, MIT Press, 2003 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb md bildschirmfoto 2013 01 15 um 09.44.01
A quantitative comparison of linear and non-linear models of motor cortical activity for the encoding and decoding of arm motions

Gao, Y., Black, M. J., Bienenstock, E., Wu, W., Donoghue, J.

In 1st International IEEE/EMBS Conference on Neural Engineering, pages: 189-192, Capri, Italy, March 2003 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb md bildschirmfoto 2013 01 15 um 09.35.12
Connecting brains with machines: The neural control of 2D cursor movement

Black, M. J., Bienenstock, E., Donoghue, J., Serruya, M., Wu, W., Gao, Y.

In 1st International IEEE/EMBS Conference on Neural Engineering, pages: 580-583, Capri, Italy, March 2003 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb md switching2003
A switching Kalman filter model for the motor cortical coding of hand motion

Wu, W., Black, M. J., Mumford, D., Gao, Y., Bienenstock, E., Donoghue, J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 2083-2086, sept 2003 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb md attractiveteaser
Attractive people: Assembling loose-limbed models using non-parametric belief propagation

Sigal, L., Isard, M., Sigelman, B., Black, M. J.

In Advances in Neural Information Processing Systems 16, NIPS, pages: 1539-1546, (Editors: S. Thrun and L. K. Saul and B. Schölkopf), MIT Press, 2003 (inproceedings)

Abstract
The detection and pose estimation of people in images and video is made challenging by the variability of human appearance, the complexity of natural scenes, and the high dimensionality of articulated body models. To cope with these problems we represent the 3D human body as a graphical model in which the relationships between the body parts are represented by conditional probability distributions. We formulate the pose estimation problem as one of probabilistic inference over a graphical model where the random variables correspond to the individual limb parameters (position and orientation). Because the limbs are described by 6-dimensional vectors encoding pose in 3-space, discretization is impractical and the random variables in our model must be continuous-valued. To approximate belief propagation in such a graph we exploit a recently introduced generalization of the particle filter. This framework facilitates the automatic initialization of the body-model from low level cues and is robust to occlusion of body parts and scene clutter.

ps

pdf (color) pdf (black and white) [BibTex]

pdf (color) pdf (black and white) [BibTex]


Thumb md hedvig
Learning the statistics of people in images and video

Sidenbladh, H., Black, M. J.

International Journal of Computer Vision, 54(1-3):183-209, August 2003 (article)

Abstract
This paper address the problems of modeling the appearance of humans and distinguishing human appearance from the appearance of general scenes. We seek a model of appearance and motion that is generic in that it accounts for the ways in which people's appearance varies and, at the same time, is specific enough to be useful for tracking people in natural scenes. Given a 3D model of the person projected into an image we model the likelihood of observing various image cues conditioned on the predicted locations and orientations of the limbs. These cues are taken to be steered filter responses corresponding to edges, ridges, and motion-compensated temporal differences. Motivated by work on the statistics of natural scenes, the statistics of these filter responses for human limbs are learned from training images containing hand-labeled limb regions. Similarly, the statistics of the filter responses in general scenes are learned to define a “background” distribution. The likelihood of observing a scene given a predicted pose of a person is computed, for each limb, using the likelihood ratio between the learned foreground (person) and background distributions. Adopting a Bayesian formulation allows cues to be combined in a principled way. Furthermore, the use of learned distributions obviates the need for hand-tuned image noise models and thresholds. The paper provides a detailed analysis of the statistics of how people appear in scenes and provides a connection between work on natural image statistics and the Bayesian tracking of people.

ps

pdf pdf from publisher code DOI [BibTex]

pdf pdf from publisher code DOI [BibTex]


Thumb md ijcvcoverhd
Guest editorial: Computational vision at Brown

Black, M. J., Kimia, B.

International Journal of Computer Vision, 54(1-3):5-11, August 2003 (article)

ps

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Thumb md iccv2003 copy
Image statistics and anisotropic diffusion

Scharr, H., Black, M. J., Haussecker, H.

In Int. Conf. on Computer Vision, pages: 840-847, October 2003 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb md delatorreijcvteaser
A framework for robust subspace learning

De la Torre, F., Black, M. J.

International Journal of Computer Vision, 54(1-3):117-142, August 2003 (article)

Abstract
Many computer vision, signal processing and statistical problems can be posed as problems of learning low dimensional linear or multi-linear models. These models have been widely used for the representation of shape, appearance, motion, etc., in computer vision applications. Methods for learning linear models can be seen as a special case of subspace fitting. One draw-back of previous learning methods is that they are based on least squares estimation techniques and hence fail to account for “outliers” which are common in realistic training sets. We review previous approaches for making linear learning methods robust to outliers and present a new method that uses an intra-sample outlier process to account for pixel outliers. We develop the theory of Robust Subspace Learning (RSL) for linear models within a continuous optimization framework based on robust M-estimation. The framework applies to a variety of linear learning problems in computer vision including eigen-analysis and structure from motion. Several synthetic and natural examples are used to develop and illustrate the theory and applications of robust subspace learning in computer vision.

ps

pdf code pdf from publisher Project Page [BibTex]

pdf code pdf from publisher Project Page [BibTex]


Thumb md cviu91teaser
Robust parameterized component analysis: Theory and applications to 2D facial appearance models

De la Torre, F., Black, M. J.

Computer Vision and Image Understanding, 91(1-2):53-71, July 2003 (article)

Abstract
Principal component analysis (PCA) has been successfully applied to construct linear models of shape, graylevel, and motion in images. In particular, PCA has been widely used to model the variation in the appearance of people's faces. We extend previous work on facial modeling for tracking faces in video sequences as they undergo significant changes due to facial expressions. Here we consider person-specific facial appearance models (PSFAM), which use modular PCA to model complex intra-person appearance changes. Such models require aligned visual training data; in previous work, this has involved a time consuming and error-prone hand alignment and cropping process. Instead, the main contribution of this paper is to introduce parameterized component analysis to learn a subspace that is invariant to affine (or higher order) geometric transformations. The automatic learning of a PSFAM given a training image sequence is posed as a continuous optimization problem and is solved with a mixture of stochastic and deterministic techniques achieving sub-pixel accuracy. We illustrate the use of the 2D PSFAM model with preliminary experiments relevant to applications including video-conferencing and avatar animation.

ps

pdf [BibTex]

pdf [BibTex]


Hyperkernels

Ong, CS. Smola, AJ. Williamson, RC.

In pages: 495-502, 2003 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


Bayesian Monte Carlo

Rasmussen, CE. Ghahramani, Z.

In Advances in Neural Information Processing Systems 15, pages: 489-496, (Editors: Becker, S. , S. Thrun, K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
We investigate Bayesian alternatives to classical Monte Carlo methods for evaluating integrals. Bayesian Monte Carlo (BMC) allows the incorporation of prior knowledge, such as smoothness of the integrand, into the estimation. In a simple problem we show that this outperforms any classical importance sampling method. We also attempt more challenging multidimensional integrals involved in computing marginal likelihoods of statistical models (a.k.a. partition functions and model evidences). We find that Bayesian Monte Carlo outperformed Annealed Importance Sampling, although for very high dimensional problems or problems with massive multimodality BMC may be less adequate. One advantage of the Bayesian approach to Monte Carlo is that samples can be drawn from any distribution. This allows for the possibility of active design of sample points so as to maximise information gain.

ei

PDF Web [BibTex]

PDF Web [BibTex]


How Many Neighbors To Consider in Pattern Pre-selection for Support Vector Classifiers?

Shin, H., Cho, S.

In Proc. of INNS-IEEE International Joint Conference on Neural Networks (IJCNN 2003), pages: 565-570, IJCNN, July 2003 (inproceedings)

Abstract
Training support vector classifiers (SVC) requires large memory and long cpu time when the pattern set is large. To alleviate the computational burden in SVC training, we previously proposed a preprocessing algorithm which selects only the patterns in the overlap region around the decision boundary, based on neighborhood properties [8], [9], [10]. The k-nearest neighbors’ class label entropy for each pattern was used to estimate the pattern’s proximity to the decision boundary. The value of parameter k is critical, yet has been determined by a rather ad-hoc fashion. We propose in this paper a systematic procedure to determine k and show its effectiveness through experiments.

ei

PDF [BibTex]

PDF [BibTex]


Technical report on Separation methods for nonlinear mixtures

Jutten, C., Karhunen, J., Almeida, L., Harmeling, S.

(D29), EU-Project BLISS, October 2003 (techreport)

ei

PDF [BibTex]

PDF [BibTex]


Large Margin Methods for Label Sequence Learning

Altun, Y., Hofmann, T.

In pages: 993-996, International Speech Communication Association, Bonn, Germany, 8th European Conference on Speech Communication and Technology (EuroSpeech), September 2003 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


Bayesian backfitting

D’Souza, A., Vijayakumar, S., Schaal, S.

In Proceedings of the 10th Joint Symposium on Neural Computation (JSNC 2003), Irvine, CA, May 2003, 2003, clmc (inproceedings)

Abstract
We present an algorithm aimed at addressing both computational and analytical intractability of Bayesian regression models which operate in very high-dimensional, usually underconstrained spaces. Several domains of research frequently provide such datasets, including chemometrics [2], and human movement analysis [1]. The literature in nonparametric statistics provides interesting solutions such as Backfitting [3] and Partial Least Squares [4], which are extremely robust and efficient, yet lack a probabilistic interpretation that could place them in the context of current research in statistical learning algorithms that emphasize the estimation of confidence, posterior distributions, and model complexity. In order to achieve numerical robustness and low computational cost, we first derive a novel Bayesian interpretation of Backfitting (BB) as a computationally efficient regression algorithm. BBÕs learning complexity scales linearly with the input dimensionality by decoupling inference among individual input dimensions. We embed BB in an efficient, locally variational model selection mechanism that automatically grows the number of backfitting experts in a mixture-of-experts regression model. We demonstrate the effectiveness of the algorithm in performing principled regularization of model complexity when fitting nonlinear manifolds while avoiding the numerical hazards associated with highly underconstrained problems. We also note that this algorithm appears applicable in various areas of neural computation, e.g., in abstract models of computational neuroscience, or implementations of statistical learning on artificial systems.

am

link (url) [BibTex]

link (url) [BibTex]


Reinforcement learning for humanoid robotics

Peters, J., Vijayakumar, S., Schaal, S.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids2003), Karlsruhe, Germany, Sept.29-30, 2003, clmc (inproceedings)

Abstract
Reinforcement learning offers one of the most general framework to take traditional robotics towards true autonomy and versatility. However, applying reinforcement learning to high dimensional movement systems like humanoid robots remains an unsolved problem. In this paper, we discuss different approaches of reinforcement learning in terms of their applicability in humanoid robotics. Methods can be coarsely classified into three different categories, i.e., greedy methods, `vanilla' policy gradient methods, and natural gradient methods. We discuss that greedy methods are not likely to scale into the domain humanoid robotics as they are problematic when used with function approximation. `Vanilla' policy gradient methods on the other hand have been successfully applied on real-world robots including at least one humanoid robot. We demonstrate that these methods can be significantly improved using the natural policy gradient instead of the regular policy gradient. A derivation of the natural policy gradient is provided, proving that the average policy gradient of Kakade (2002) is indeed the true natural gradient. A general algorithm for estimating the natural gradient, the Natural Actor-Critic algorithm, is introduced. This algorithm converges to the nearest local minimum of the cost function with respect to the Fisher information metric under suitable conditions. The algorithm outperforms non-natural policy gradients by far in a cart-pole balancing evaluation, and for learning nonlinear dynamic motor primitives for humanoid robot control. It offers a promising route for the development of reinforcement learning for truly high dimensionally continuous state-action systems.

am

link (url) [BibTex]

link (url) [BibTex]


An Introduction to Variable and Feature Selection.

Guyon, I., Elisseeff, A.

Journal of Machine Learning, 3, pages: 1157-1182, 2003 (article)

ei

[BibTex]

[BibTex]


On the Complexity of Learning the Kernel Matrix

Bousquet, O., Herrmann, D.

In Advances in Neural Information Processing Systems 15, pages: 399-406, (Editors: Becker, S. , S. Thrun, K. Obermayer), The MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
We investigate data based procedures for selecting the kernel when learning with Support Vector Machines. We provide generalization error bounds by estimating the Rademacher complexities of the corresponding function classes. In particular we obtain a complexity bound for function classes induced by kernels with given eigenvectors, i.e., we allow to vary the spectrum and keep the eigenvectors fix. This bound is only a logarithmic factor bigger than the complexity of the function class induced by a single kernel. However, optimizing the margin over such classes leads to overfitting. We thus propose a suitable way of constraining the class. We use an efficient algorithm to solve the resulting optimization problem, present preliminary experimental results, and compare them to an alignment-based approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


Feature Selection for Support Vector Machines by Means of Genetic Algorithms

Fröhlich, H., Chapelle, O., Schölkopf, B.

In 15th IEEE International Conference on Tools with AI, pages: 142-148, 15th IEEE International Conference on Tools with AI, 2003 (inproceedings)

ei

[BibTex]

[BibTex]


A case based comparison of identification with neural network and Gaussian process models.

Kocijan, J. Banko, B. Likar, B. Girard, A. Murray-Smith, R. Rasmussen, CE.

In Proceedings of the International Conference on Intelligent Control Systems and Signal Processing ICONS 2003, 1, pages: 137-142, (Editors: Ruano, E.A.), Proceedings of the International Conference on Intelligent Control Systems and Signal Processing ICONS, April 2003 (inproceedings)

Abstract
In this paper an alternative approach to black-box identification of non-linear dynamic systems is compared with the more established approach of using artificial neural networks. The Gaussian process prior approach is a representative of non-parametric modelling approaches. It was compared on a pH process modelling case study. The purpose of modelling was to use the model for control design. The comparison revealed that even though Gaussian process models can be effectively used for modelling dynamic systems caution has to be axercised when signals are selected.

ei

PDF [BibTex]

PDF [BibTex]


Propagation of Uncertainty in Bayesian Kernel Models - Application to Multiple-Step Ahead Forecasting

Quiñonero-Candela, J. Girard, A. Larsen, J. Rasmussen, CE.

In IEEE International Conference on Acoustics, Speech and Signal Processing, 2, pages: 701-704, IEEE International Conference on Acoustics, Speech and Signal Processing, 2003 (inproceedings)

Abstract
The object of Bayesian modelling is the predictive distribution, which in a forecasting scenario enables improved estimates of forecasted values and their uncertainties. In this paper we focus on reliably estimating the predictive mean and variance of forecasted values using Bayesian kernel based models such as the Gaussian Process and the Relevance Vector Machine. We derive novel analytic expressions for the predictive mean and variance for Gaussian kernel shapes under the assumption of a Gaussian input distribution in the static case, and of a recursive Gaussian predictive density in iterative forecasting. The capability of the method is demonstrated for forecasting of time-series and compared to approximate methods.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


Unsupervised Clustering of Images using their Joint Segmentation

Seldin, Y., Starik, S., Werman, M.

In The 3rd International Workshop on Statistical and Computational Theories of Vision (SCTV 2003), pages: 1-24, 3rd International Workshop on Statistical and Computational Theories of Vision (SCTV), 2003 (inproceedings)

ei

PDF Web [BibTex]

PDF Web [BibTex]


Image Reconstruction by Linear Programming

Tsuda, K., Rätsch, G.

(118), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, October 2003 (techreport)

ei

PDF [BibTex]

PDF [BibTex]


Ranking on Data Manifolds

Zhou, D., Weston, J., Gretton, A., Bousquet, O., Schölkopf, B.

(113), Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany, June 2003 (techreport)

Abstract
The Google search engine has had a huge success with its PageRank web page ranking algorithm, which exploits global, rather than local, hyperlink structure of the World Wide Web using random walk. This algorithm can only be used for graph data, however. Here we propose a simple universal ranking algorithm for vectorial data, based on the exploration of the intrinsic global geometric structure revealed by a huge amount of data. Experimental results from image and text to bioinformatics illustrates the validity of our algorithm.

ei

PDF [BibTex]

PDF [BibTex]


A Note on Parameter Tuning for On-Line Shifting Algorithms

Bousquet, O.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2003 (techreport)

Abstract
In this short note, building on ideas of M. Herbster [2] we propose a method for automatically tuning the parameter of the FIXED-SHARE algorithm proposed by Herbster and Warmuth [3] in the context of on-line learning with shifting experts. We show that this can be done with a memory requirement of $O(nT)$ and that the additional loss incurred by the tuning is the same as the loss incurred for estimating the parameter of a Bernoulli random variable.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


Phase Information and the Recognition of Natural Images

Braun, D., Wichmann, F., Gegenfurtner, K.

6, pages: 138, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (poster)

Abstract
Fourier phase plays an important role in determining image structure. For example, when the phase spectrum of an image showing a ower is swapped with the phase spectrum of an image showing a tank, then we will usually perceive a tank in the resulting image, even though the amplitude spectrum is still that of the ower. Also, when the phases of an image are randomly swapped across frequencies, the resulting image becomes impossible to recognize. Our goal was to evaluate the e ect of phase manipulations in a more quantitative manner. On each trial subjects viewed two images of natural scenes. The subject had to indicate which one of the two images contained an animal. The spectra of the images were manipulated by adding random phase noise at each frequency. The phase noise was uniformly distributed in the interval [;+], where  was varied between 0 degree and 180 degrees. Image pairs were displayed for 100 msec. Subjects were remarkably resistant to the addition of phase noise. Even with [120; 120] degree noise, subjects still were at a level of 75% correct. The introduction of phase noise leads to a reduction of image contrast. Subjects were slightly better than a simple prediction based on this contrast reduction. However, when contrast response functions were measured in the same experimental paradigm, we found that performance in the phase noise experiment was signi cantly lower than that predicted by the corresponding contrast reduction.

ei

Web [BibTex]

Web [BibTex]


Kernel Methods for Classification and Signal Separation

Gretton, A.

pages: 226, Biologische Kybernetik, University of Cambridge, Cambridge, April 2003 (phdthesis)

ei

PostScript [BibTex]

PostScript [BibTex]


The em Algorithm for Kernel Matrix Completion with Auxiliary Data

Tsuda, K., Akaho, S., Asai, K.

Journal of Machine Learning Research, 4, pages: 67-81, May 2003 (article)

ei

PDF [BibTex]

PDF [BibTex]


Kernel Methods and Their Applications to Signal Processing

Bousquet, O., Perez-Cruz, F.

In Proceedings. (ICASSP ‘03), Special Session on Kernel Methods, pages: 860 , ICASSP, 2003 (inproceedings)

Abstract
Recently introduced in Machine Learning, the notion of kernels has drawn a lot of interest as it allows to obtain non-linear algorithms from linear ones in a simple and elegant manner. This, in conjunction with the introduction of new linear classification methods such as the Support Vector Machines has produced significant progress. The successes of such algorithms is now spreading as they are applied to more and more domains. Many Signal Processing problems, by their non-linear and high-dimensional nature may benefit from such techniques. We give an overview of kernel methods and their recent applications.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


On-Line One-Class Support Vector Machines. An Application to Signal Segmentation

Gretton, A., Desobry, .

In IEEE ICASSP Vol. 2, pages: 709-712, IEEE ICASSP, April 2003 (inproceedings)

Abstract
In this paper, we describe an efficient algorithm to sequentially update a density support estimate obtained using one-class support vector machines. The solution provided is an exact solution, which proves to be far more computationally attractive than a batch approach. This deterministic technique is applied to the problem of audio signal segmentation, with simulations demonstrating the computational performance gain on toy data sets, and the accuracy of the segmentation on audio signals.

ei

PostScript [BibTex]

PostScript [BibTex]


Marginalized Kernels between Labeled Graphs

Kashima, H., Tsuda, K., Inokuchi, A.

In 20th International Conference on Machine Learning, pages: 321-328, (Editors: Faucett, T. and N. Mishra), 20th International Conference on Machine Learning, August 2003 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


Predictive control with Gaussian process models

Kocijan, J. Murray-Smith, R. Rasmussen, CE. Likar, B.

In Proceedings of IEEE Region 8 Eurocon 2003: Computer as a Tool, pages: 352-356, (Editors: Zajc, B. and M. Tkal), Proceedings of IEEE Region 8 Eurocon: Computer as a Tool, 2003 (inproceedings)

Abstract
This paper describes model-based predictive control based on Gaussian processes.Gaussian process models provide a probabilistic non-parametric modelling approach for black-box identification of non-linear dynamic systems. It offers more insight in variance of obtained model response, as well as fewer parameters to determine than other models. The Gaussian processes can highlight areas of the input space where prediction quality is poor, due to the lack of data or its complexity, by indicating the higher variance around the predicted mean. This property is used in predictive control, where optimisation of control signal takes the variance information into account. The predictive control principle is demonstrated on a simulated example of nonlinear system.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


Extension of the nu-SVM range for classification

Perez-Cruz, F., Weston, J., Herrmann, D., Schölkopf, B.

In Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Vol. 190, 190, pages: 179-196, NATO Science Series III: Computer and Systems Sciences, (Editors: J Suykens and G Horvath and S Basu and C Micchelli and J Vandewalle), IOS Press, Amsterdam, 2003 (inbook)

ei

[BibTex]

[BibTex]


Kernel Hebbian Algorithm for Iterative Kernel Principal Component Analysis

Kim, K., Franz, M., Schölkopf, B.

(109), MPI f. biologische Kybernetik, Tuebingen, June 2003 (techreport)

Abstract
A new method for performing a kernel principal component analysis is proposed. By kernelizing the generalized Hebbian algorithm, one can iteratively estimate the principal components in a reproducing kernel Hilbert space with only linear order memory complexity. The derivation of the method, a convergence proof, and preliminary applications in image hyperresolution are presented. In addition, we discuss the extension of the method to the online learning of kernel principal components.

ei

PDF [BibTex]

PDF [BibTex]


Learning with Local and Global Consistency

Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.

(112), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, June 2003 (techreport)

Abstract
We consider the learning problem in the transductive setting. Given a set of points of which only some are labeled, the goal is to predict the label of the unlabeled points. A principled clue to solve such a learning problem is the consistency assumption that a classifying function should be sufficiently smooth with respect to the structure revealed by these known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

ei

[BibTex]

[BibTex]


The Kernel Mutual Information

Gretton, A., Herbrich, R., Smola, A.

Max Planck Institute for Biological Cybernetics, April 2003 (techreport)

Abstract
We introduce two new functions, the kernel covariance (KC) and the kernel mutual information (KMI), to measure the degree of independence of several continuous random variables. The former is guaranteed to be zero if and only if the random variables are pairwise independent; the latter shares this property, and is in addition an approximate upper bound on the mutual information, as measured near independence, and is based on a kernel density estimate. We show that Bach and Jordan‘s kernel generalised variance (KGV) is also an upper bound on the same kernel density estimate, but is looser. Finally, we suggest that the addition of a regularising term in the KGV causes it to approach the KMI, which motivates the introduction of this regularisation. The performance of the KC and KMI is verified in the context of instantaneous independent component analysis (ICA), by recovering both artificial and real (musical) signals following linear mixing.

ei

PostScript [BibTex]

PostScript [BibTex]


Introduction: Robots with Cognition?

Franz, MO.

6, pages: 38, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (talk)

Abstract
Using robots as models of cognitive behaviour has a long tradition in robotics. Parallel to the historical development in cognitive science, one observes two major, subsequent waves in cognitive robotics. The first is based on ideas of classical, cognitivist Artificial Intelligence (AI). According to the AI view of cognition as rule-based symbol manipulation, these robots typically try to extract symbolic descriptions of the environment from their sensors that are used to update a common, global world representation from which, in turn, the next action of the robot is derived. The AI approach has been successful in strongly restricted and controlled environments requiring well-defined tasks, e.g. in industrial assembly lines. AI-based robots mostly failed, however, in the unpredictable and unstructured environments that have to be faced by mobile robots. This has provoked the second wave in cognitive robotics which tries to achieve cognitive behaviour as an emergent property from the interaction of simple, low-level modules. Robots of the second wave are called animats as their architecture is designed to closely model aspects of real animals. Using only simple reactive mechanisms and Hebbian-type or evolutionary learning, the resulting animats often outperformed the highly complex AI-based robots in tasks such as obstacle avoidance, corridor following etc. While successful in generating robust, insect-like behaviour, typical animats are limited to stereotyped, fixed stimulus-response associations. If one adopts the view that cognition requires a flexible, goal-dependent choice of behaviours and planning capabilities (H.A. Mallot, Kognitionswissenschaft, 1999, 40-48) then it appears that cognitive behaviour cannot emerge from a collection of purely reactive modules. It rather requires environmentally decoupled structures that work without directly engaging the actions that it is concerned with. This poses the current challenge to cognitive robotics: How can we build cognitive robots that show the robustness and the learning capabilities of animats without falling back into the representational paradigm of AI? The speakers of the symposium present their approaches to this question in the context of robot navigation and sensorimotor learning. In the first talk, Prof. Helge Ritter introduces a robot system for imitation learning capable of exploring various alternatives in simulation before actually performing a task. The second speaker, Angelo Arleo, develops a model of spatial memory in rat navigation based on his electrophysiological experiments. He validates the model on a mobile robot which, in some navigation tasks, shows a performance comparable to that of the real rat. A similar model of spatial memory is used to investigate the mechanisms of territory formation in a series of robot experiments presented by Prof. Hanspeter Mallot. In the last talk, we return to the domain of sensorimotor learning where Ralf M{\"o}ller introduces his approach to generate anticipatory behaviour by learning forward models of sensorimotor relationships.

ei

Web [BibTex]

Web [BibTex]


m-Alternative Forced Choice—Improving the Efficiency of the Method of Constant Stimuli

Jäkel, F.

Biologische Kybernetik, Graduate School for Neural and Behavioural Sciences, Tübingen, 2003 (diplomathesis)

ei

[BibTex]

[BibTex]


Rademacher and Gaussian averages in Learning Theory

Bousquet, O.

Universite de Marne-la-Vallee, March 2003 (talk)

ei

PDF [BibTex]

PDF [BibTex]


Dynamics of a rigid body in a Stokes fluid

Gonzalez, O. Graf, ABA. Maddocks, JH.

Journal of Fluid Mechanics, 2003 (article) Accepted

ei

[BibTex]

[BibTex]


A novel transient heater-foil technique for liquid crystal experiments on film cooled surfaces

Vogel, G. Graf, ABA. von Wolfersdorf, J. Weigand, B.

ASME Journal of Turbomachinery, 125, pages: 529-537, 2003 (article)

ei

PDF [BibTex]

PDF [BibTex]


Blind separation of post-nonlinear mixtures using linearizing transformations and temporal decorrelation

Ziehe, A., Kawanabe, M., Harmeling, S., Müller, K.

Journal of Machine Learning Research, 4(7-8):1319-1338, November 2003 (article)

Abstract
We propose two methods that reduce the post-nonlinear blind source separation problem (PNL-BSS) to a linear BSS problem. The first method is based on the concept of maximal correlation: we apply the alternating conditional expectation (ACE) algorithm--a powerful technique from non-parametric statistics--to approximately invert the componentwise nonlinear functions. The second method is a Gaussianizing transformation, which is motivated by the fact that linearly mixed signals before nonlinear transformation are approximately Gaussian distributed. This heuristic, but simple and efficient procedure works as good as the ACE method. Using the framework provided by ACE, convergence can be proven. The optimal transformations obtained by ACE coincide with the sought-after inverse functions of the nonlinearities. After equalizing the nonlinearities, temporal decorrelation separation (TDSEP) allows us to recover the source signals. Numerical simulations testing "ACE-TD" and "Gauss-TD" on realistic examples are performed with excellent results.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]