68 results (BibTeX)

2000


Stochastic modeling and tracking of human motion

Ormoneit, D., Sidenbladh, H., Black, M. J., Hastie, T.

Learning 2000, Snowbird, UT, April 2000 (conference)

ps

abstract [BibTex]

2000


abstract [BibTex]


Thumb md bildschirmfoto 2012 12 12 um 11.40.47
A framework for modeling the appearance of 3D articulated figures

Sidenbladh, H., De la Torre, F., Black, M. J.

In Int. Conf. on Automatic Face and Gesture Recognition, pages: 368-375, Grenoble, France, March 2000 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Functional analysis of human motion data

Ormoneit, D., Hastie, T., Black, M. J.

In In Proc. 5th World Congress of the Bernoulli Society for Probability and Mathematical Statistics and 63rd Annual Meeting of the Institute of Mathematical Statistics, Guanajuato, Mexico, May 2000 (inproceedings)

ps

[BibTex]

[BibTex]


Thumb md bildschirmfoto 2012 12 11 um 12.12.25
Stochastic tracking of 3D human figures using 2D image motion

(Winner of the 2010 Koenderink Prize for Fundamental Contributions in Computer Vision)

Sidenbladh, H., Black, M. J., error., Fleet, D.

In European Conference on Computer Vision, ECCV, pages: 702-718, LNCS 1843, Springer Verlag, Dublin, Ireland, June 2000 (inproceedings)

Abstract
A probabilistic method for tracking 3D articulated human figures in monocular image sequences is presented. Within a Bayesian framework, we define a generative model of image appearance, a robust likelihood function based on image gray level differences, and a prior probability distribution over pose and joint angles that models how humans move. The posterior probability distribution over model parameters is represented using a discrete set of samples and is propagated over time using particle filtering. The approach extends previous work on parameterized optical flow estimation to exploit a complex 3D articulated motion model. It also extends previous work on human motion tracking by including a perspective camera model, by modeling limb self occlusion, and by recovering 3D motion from a monocular sequence. The explicit posterior probability distribution represents ambiguities due to image matching, model singularities, and perspective projection. The method relies only on a frame-to-frame assumption of brightness constancy and hence is able to track people under changing viewpoints, in grayscale image sequences, and with complex unknown backgrounds.

ps

pdf code [BibTex]

pdf code [BibTex]


Thumb md bildschirmfoto 2012 12 06 um 09.48.16
Robustly estimating changes in image appearance

Black, M. J., Fleet, D., Yacoob, Y.

Computer Vision and Image Understanding, 78(1):8-31, 2000 (article)

Abstract
We propose a generalized model of image “appearance change” in which brightness variation over time is represented as a probabilistic mixture of different causes. We define four generative models of appearance change due to (1) object or camera motion; (2) illumination phenomena; (3) specular reflections; and (4) “iconic changes” which are specific to the objects being viewed. These iconic changes include complex occlusion events and changes in the material properties of the objects. We develop a robust statistical framework for recovering these appearance changes in image sequences. This approach generalizes previous work on optical flow to provide a richer description of image events and more reliable estimates of image motion in the presence of shadows and specular reflections.

ps

pdf pdf from publisher DOI [BibTex]

pdf pdf from publisher DOI [BibTex]


Thumb md bildschirmfoto 2012 12 06 um 09.22.34
Design and use of linear models for image motion analysis

Fleet, D., Black, M. J., Yacoob, Y., Jepson, A.

Int. J. of Computer Vision, 36(3):171-193, 2000 (article)

Abstract
Linear parameterized models of optical flow, particularly affine models, have become widespread in image motion analysis. The linear model coefficients are straightforward to estimate, and they provide reliable estimates of the optical flow of smooth surfaces. Here we explore the use of parameterized motion models that represent much more varied and complex motions. Our goals are threefold: to construct linear bases for complex motion phenomena; to estimate the coefficients of these linear models; and to recognize or classify image motions from the estimated coefficients. We consider two broad classes of motions: i) generic “motion features” such as motion discontinuities and moving bars; and ii) non-rigid, object-specific, motions such as the motion of human mouths. For motion features we construct a basis of steerable flow fields that approximate the motion features. For object-specific motions we construct basis flow fields from example motions using principal component analysis. In both cases, the model coefficients can be estimated directly from spatiotemporal image derivatives with a robust, multi-resolution scheme. Finally, we show how these model coefficients can be use to detect and recognize specific motions such as occlusion boundaries and facial expressions.

ps

pdf [BibTex]

pdf [BibTex]


Thumb md ijcv2000teaser
Probabilistic detection and tracking of motion boundaries

Black, M. J., Fleet, D.

Int. J. of Computer Vision, 38(3):231-245, July 2000 (article)

Abstract
We propose a Bayesian framework for representing and recognizing local image motion in terms of two basic models: translational motion and motion boundaries. Motion boundaries are represented using a non-linear generative model that explicitly encodes the orientation of the boundary, the velocities on either side, the motion of the occluding edge over time, and the appearance/disappearance of pixels at the boundary. We represent the posterior probability distribution over the model parameters given the image data using discrete samples. This distribution is propagated over time using a particle filtering algorithm. To efficiently represent such a high-dimensional space we initialize samples using the responses of a low-level motion discontinuity detector. The formulation and computational model provide a general probabilistic framework for motion estimation with multiple, non-linear, models.

ps

pdf pdf from publisher Video [BibTex]

pdf pdf from publisher Video [BibTex]


Knowledge Discovery in Databases: An Information Retrieval Perspective

Ong, CS.

Malaysian Journal of Computer Science, 13(2):54-63, December 2000 (article)

Abstract
The current trend of increasing capabilities in data generation and collection has resulted in an urgent need for data mining applications, also called knowledge discovery in databases. This paper identifies and examines the issues involved in extracting useful grains of knowledge from large amounts of data. It describes a framework to categorise data mining systems. The author also gives an overview of the issues pertaining to data pre processing, as well as various information gathering methodologies and techniques. The paper covers some popular tools such as classification, clustering, and generalisation. A summary of statistical and machine learning techniques used currently is also provided.

ei

PDF [BibTex]

PDF [BibTex]


Engineering Support Vector Machine Kernels That Recognize Translation Initiation Sites

Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.

Bioinformatics, 16(9):799-807, September 2000 (article)

Abstract
Motivation: In order to extract protein sequences from nucleotide sequences, it is an important step to recognize points at which regions start that code for proteins. These points are called translation initiation sites (TIS). Results: The task of finding TIS can be modeled as a classification problem. We demonstrate the applicability of support vector machines for this task, and show how to incorporate prior biological knowledge by engineering an appropriate kernel function. With the described techniques the recognition performance can be improved by 26% over leading existing approaches. We provide evidence that existing related methods (e.g. ESTScan) could profit from advanced TIS recognition.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Identification of Drug Target Proteins

Zien, A., Küffner, R., Mevissen, T., Zimmer, R., Lengauer, T.

ERCIM News, 43, pages: 16-17, October 2000 (article)

ei

Web [BibTex]

Web [BibTex]


The Infinite Gaussian Mixture Model

Rasmussen, CE.

In Advances in Neural Information Processing Systems 12, pages: 554-560, (Editors: Solla, S.A. , T.K. Leen, K-R Müller), MIT Press, Cambridge, MA, USA, Thirteenth Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)

Abstract
In a Bayesian mixture model it is not necessary a priori to limit the number of components to be finite. In this paper an infinite Gaussian mixture model is presented which neatly sidesteps the difficult problem of finding the ``right'' number of mixture components. Inference in the model is done using an efficient parameter-free Markov Chain that relies entirely on Gibbs sampling.

ei

PDF Web [BibTex]

PDF Web [BibTex]


Statistical Learning and Kernel Methods

Schölkopf, B.

In CISM Courses and Lectures, International Centre for Mechanical Sciences Vol.431, CISM Courses and Lectures, International Centre for Mechanical Sciences, 431(23):3-24, (Editors: G Della Riccia and H-J Lenz and R Kruse), Springer, Vienna, Data Fusion and Perception, 2000 (inbook)

ei

[BibTex]

[BibTex]


Generalization Abilities of Ensemble Learning Algorithms

Shin, H., Jang, M., Cho, S.

In Proc. of the Korean Brain Society Conference, pages: 129-133, Korean Brain Society Conference, June 2000 (inproceedings)

ei

[BibTex]

[BibTex]


On Designing an Automated Malaysian Stemmer for the Malay Language

Tai, SY. Ong, CS. Abullah, NA.

In Fifth International Workshop on Information Retrieval with Asian Languages, pages: 207-208, ACM Press, New York, NY, USA, Fifth International Workshop on Information Retrieval with Asian Languages, October 2000 (inproceedings)

Abstract
Online and interactive information retrieval systems are likely to play an increasing role in the Malay Language community. To facilitate and automate the process of matching morphological term variants, a stemmer focusing on common affix removal algorithms is proposed as part of the design of an information retrieval system for the Malay Language. Stemming is a morphological process of normalizing word tokens down to their essential roots. The proposed stemmer strips prefixes and suffixes off the word. The experiment conducted with web sites selected from the World Wide Web has exhibited substantial improvements in the number of words indexed.

ei

PostScript Web DOI [BibTex]

PostScript Web DOI [BibTex]


Analysis of Gene Expression Data with Pathway Scores

Zien, A., Küffner, R., Zimmer, R., Lengauer, T.

In ISMB 2000, pages: 407-417, AAAI Press, Menlo Park, CA, USA, 8th International Conference on Intelligent Systems for Molecular Biology, August 2000 (inproceedings)

Abstract
We present a new approach for the evaluation of gene expression data. The basic idea is to generate biologically possible pathways and to score them with respect to gene expression measurements. We suggest sample scoring functions for different problem specifications. The significance of the scores for the investigated pathways is assessed by comparison to a number of scores for random pathways. We show that simple scoring functions can assign statistically significant scores to biologically relevant pathways. This suggests that the combination of appropriate scoring functions with the systematic generation of pathways can be used in order to select the most interesting pathways based on gene expression measurements.

ei

PDF [BibTex]

PDF [BibTex]


Contrast discrimination using periodic pulse trains

Wichmann, F., Henning, G.

pages: 74, 3. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2000 (poster)

Abstract
Understanding contrast transduction is essential for understanding spatial vision. Previous research (Wichmann et al. 1998; Wichmann, 1999; Henning and Wichmann, 1999) has demonstrated the importance of high contrasts to distinguish between alternative models of contrast discrimination. However, the modulation transfer function of the eye imposes large contrast losses on stimuli, particularly for stimuli of high spatial frequency, making high retinal contrasts difficult to obtain using sinusoidal gratings. Standard 2AFC contrast discrimination experiments were conducted using periodic pulse trains as stimuli. Given our Mitsubishi display we achieve stimuli with up to 160% contrast at the fundamental frequency. The shape of the threshold versus (pedestal) contrast (TvC) curve using pulse trains shows the characteristic dipper shape, i.e. contrast discrimination is sometimes “easier” than detection. The rising part of the TvC function has the same slope as that measured for contrast discrimination using sinusoidal gratings of the same frequency as the fundamental. Periodic pulse trains offer the possibility to explore the visual system’s properties using high retinal contrasts. Thus they might prove useful in tasks other than contrast discrimination. Second, at least for high spatial frequencies (8 c/deg) it appears that contrast discrimination using sinusoids and periodic pulse trains results in virtually identical TvC functions, indicating a lack of probability summation. Further implications of these results are discussed.

ei

Web [BibTex]

Web [BibTex]


A brachiating robot controller

Nakanishi, J. Fukuda, T. Koditschek, D. E.

IEEE Transactions on Robotics and Automation, 16(2):109-123, 2000, clmc (article)

Abstract
We report on our empirical studies of a new controller for a two-link brachiating robot. Motivated by the pendulum-like motion of an apeâ??s brachiation, we encode this task as the output of a â??target dynamical system.â? Numerical simulations indicate that the resulting controller solves a number of brachiation problems that we term the â??ladder,â? â??swing-up,â? and â??ropeâ? problems. Preliminary analysis provides some explanation for this success. The proposed controller is implemented on a physical system in our laboratory. The robot achieves behaviors including â??swing locomotionâ? and â??swing upâ? and is capable of continuous locomotion over several rungs of a ladder. We discuss a number of formal questions whose answers will be required to gain a full understanding of the strengths and weaknesses of this approach.

am

link (url) [BibTex]

link (url) [BibTex]


Real-time robot learning with locally weighted statistical learning

Schaal, S., Atkeson, C., Vijayakumar, S.

In International Conference on Robotics and Automation (ICRA2000), San Francisco, April 2000, 2000, clmc (inproceedings)

Abstract
Locally weighted learning (LWL) is a class of statistical learning techniques that provides useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of robotic systems. This paper introduces several LWL algorithms that have been tested successfully in real-time learning of complex robot tasks. We discuss two major classes of LWL, memory-based LWL and purely incremental LWL that does not need to remember any data explicitly. In contrast to the traditional beliefs that LWL methods cannot work well in high-dimensional spaces, we provide new algorithms that have been tested in up to 50 dimensional learning problems. The applicability of our LWL algorithms is demonstrated in various robot learning examples, including the learning of devil-sticking, pole-balancing of a humanoid robot arm, and inverse-dynamics learning for a seven degree-of-freedom robot.

am

link (url) [BibTex]

link (url) [BibTex]


Biomimetic gaze stabilization

Shibata, T., Schaal, S.

In Robot learning: an Interdisciplinary approach, pages: 31-52, (Editors: Demiris, J.;Birk, A.), World Scientific, 2000, clmc (inbook)

Abstract
Accurate oculomotor control is one of the essential pre-requisites for successful visuomotor coordination. In this paper, we suggest a biologically inspired control system for learning gaze stabilization with a biomimetic robotic oculomotor system. In a stepwise fashion, we develop a control circuit for the vestibulo-ocular reflex (VOR) and the opto-kinetic response (OKR), and add a nonlinear learning network to allow adaptivity. We discuss the parallels and differences of our system with biological oculomotor control and suggest solutions how to deal with nonlinearities and time delays in the control system. In simulation and actual robot studies, we demonstrate that our system can learn gaze stabilization in real time in only a few seconds with high final accuracy.

am

link (url) [BibTex]

link (url) [BibTex]


New Support Vector Algorithms

Schölkopf, B., Smola, A., Williamson, R., Bartlett, P.

Neural Computation, 12(5):1207-1245, May 2000 (article)

Abstract
We propose a new class of support vector algorithms for regression and classification. In these algorithms, a parameter {nu} lets one effectively control the number of support vectors. While this can be useful in its own right, the parameterization has the additional benefit of enabling us to eliminate one of the other free parameters of the algorithm: the accuracy parameter {epsilon} in the regression case, and the regularization constant C in the classification case. We describe the algorithms, give some theoretical results concerning the meaning and the choice of {nu}, and report experimental results.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Bounds on Error Expectation for Support Vector Machines

Vapnik, V., Chapelle, O.

Neural Computation, 12(9):2013-2036, 2000 (article)

Abstract
We introduce the concept of span of support vectors (SV) and show that the generalization ability of support vector machines (SVM) depends on this new geometrical concept. We prove that the value of the span is always smaller (and can be much smaller) than the diameter of the smallest sphere containing th e support vectors, used in previous bounds. We also demonstate experimentally that the prediction of the test error given by the span is very accurate and has direct application in model selection (choice of the optimal parameters of the SVM)

ei

GZIP [BibTex]

GZIP [BibTex]


Support vector method for novelty detection

Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J.

In Advances in Neural Information Processing Systems 12, pages: 582-588, (Editors: SA Solla and TK Leen and K-R Müller), MIT Press, Cambridge, MA, USA, 13th Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)

Abstract
Suppose you are given some dataset drawn from an underlying probability distribution ¤ and you want to estimate a “simple” subset ¥ of input space such that the probability that a test point drawn from ¤ lies outside of ¥ equals some a priori specified ¦ between § and ¨. We propose a method to approach this problem by trying to estimate a function © which is positive on ¥ and negative on the complement. The functional form of © is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. We provide a theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabelled data.

ei

PDF Web [BibTex]

PDF Web [BibTex]


Generalization Abilities of Ensemble Learning Algorithms: OLA, Bagging, Boosting

Shin, H., Jang, M., Cho, S., Lee, B., Lim, Y.

In Proc. of the Korea Information Science Conference, pages: 226-228, Conference on Korean Information Science, April 2000 (inproceedings)

ei

[BibTex]

[BibTex]


A simple iterative approach to parameter optimization

Zien, A., Zimmer, R., Lengauer, T.

In RECOMB2000, pages: 318-327, ACM Press, New York, NY, USA, Forth Annual Conference on Research in Computational Molecular Biology, April 2000 (inproceedings)

Abstract
Various bioinformatics problems require optimizing several different properties simultaneously. For example, in the protein threading problem, a linear scoring function combines the values for different properties of possible sequence-to-structure alignments into a single score to allow for unambigous optimization. In this context, an essential question is how each property should be weighted. As the native structures are known for some sequences, the implied partial ordering on optimal alignments may be used to adjust the weights. To resolve the arising interdependence of weights and computed solutions, we propose a novel approach: iterating the computation of solutions (here: threading alignments) given the weights and the estimation of optimal weights of the scoring function given these solutions via a systematic calibration method. We show that this procedure converges to structurally meaningful weights, that also lead to significantly improved performance on comprehensive test data sets as measured in different ways. The latter indicates that the performance of threading can be improved in general.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Solving Satisfiability Problems with Genetic Algorithms

Harmeling, S.

In Genetic Algorithms and Genetic Programming at Stanford 2000, pages: 206-213, (Editors: Koza, J. R.), Stanford Bookstore, Stanford, CA, USA, June 2000 (inbook)

Abstract
We show how to solve hard 3-SAT problems using genetic algorithms. Furthermore, we explore other genetic operators that may be useful to tackle 3-SAT problems, and discuss their pros and cons.

ei

PDF [BibTex]

PDF [BibTex]


Robust ensemble learning

Rätsch, G., Schölkopf, B., Smola, A., Mika, S., Onoda, T., Müller, K.

In Advances in Large Margin Classifiers, pages: 207-220, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D. Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)

ei

[BibTex]

[BibTex]


Intelligence as a Complex System

Zhou, D.

Biologische Kybernetik, 2000 (phdthesis)

ei

[BibTex]

[BibTex]


Neural Networks in Robot Control

Peters, J.

Biologische Kybernetik, Fernuniversität Hagen, Hagen, Germany, 2000 (diplomathesis)

ei

[BibTex]

[BibTex]


Synchronized robot drumming by neural oscillator

Kotosaka, S., Schaal, S.

In The International Symposium on Adaptive Motion of Animals and Machines, Montreal, Canada, August 2000, clmc (inproceedings)

Abstract
Sensory-motor integration is one of the key issues in robotics. In this paper, we propose an approach to rhythmic arm movement control that is synchronized with an external signal based on exploiting a simple neural oscillator network. Trajectory generation by the neural oscillator is a biologically inspired method that can allow us to generate a smooth and continuous trajectory. The parameter tuning of the oscillators is used to generate a synchronized movement with wide intervals. We adopted the method for the drumming task as an example task. By using this method, the robot can realize synchronized drumming with wide drumming intervals in real time. The paper also shows the experimental results of drumming by a humanoid robot.

am

link (url) [BibTex]

link (url) [BibTex]


Fast learning of biomimetic oculomotor control with nonparametric regression networks

Shibata, T., Schaal, S.

In International Conference on Robotics and Automation (ICRA2000), pages: 3847-3854, San Francisco, April 2000, 2000, clmc (inproceedings)

Abstract
Accurate oculomotor control is one of the essential pre-requisites of successful visuomotor coordination. Given the variable nonlinearities of the geometry of binocular vision as well as the possible nonlinearities of the oculomotor plant, it is desirable to accomplish accurate oculomotor control through learning approaches. In this paper, we investigate learning control for a biomimetic active vision system mounted on a humanoid robot. By combining a biologically inspired cerebellar learning scheme with a state-of-the-art statistical learning network, our robot system is able to acquire high performance visual stabilization reflexes after about 40 seconds of learning despite significant nonlinearities and processing delays in the system.

am

link (url) [BibTex]

link (url) [BibTex]


Interaction of rhythmic and discrete pattern generators in single joint movements

Sternad, D., Dean, W., Schaal, S.

Human Movement Science, 19(4):627-665, 2000, clmc (article)

Abstract
The study investigates a single-joint movement task that combines a translatory and cyclic component with the objective to investigate the interaction of discrete and rhythmic movement elements. Participants performed an elbow movement in the horizontal plane, oscillating at a prescribed frequency around one target and shifting to a second target upon a trigger signal, without stopping the oscillation. Analyses focused on extracting the mutual influences of the rhythmic and the discrete component of the task. Major findings are: (1) The onset of the discrete movement was confined to a limited phase window in the rhythmic cycle. (2) Its duration was influenced by the period of oscillation. (3) The rhythmic oscillation was "perturbed" by the discrete movement as indicated by phase resetting. On the basis of these results we propose a model for the coordination of discrete and rhythmic actions (K. Matsuoka, Sustained oscillations generated by mutually inhibiting neurons with adaptations, Biological Cybernetics 52 (1985) 367-376; Mechanisms of frequency and pattern control in the neural rhythm generators, Biological Cybernetics 56 (1987) 345-353). For rhythmic movements an oscillatory pattern generator is developed following models of half-center oscillations (D. Bullock, S. Grossberg, The VITE model: a neural command circuit for generating arm and articulated trajectories, in: J.A.S. Kelso, A.J. Mandel, M. F. Shlesinger (Eds.), Dynamic Patterns in Complex Systems. World Scientific. Singapore. 1988. pp. 305-326). For discrete movements a point attractor dynamics is developed close to the VITE model For each joint degree of freedom both pattern generators co-exist but exert mutual inhibition onto each other. The suggested modeling framework provides a unified account for both discrete and rhythmic movements on the basis of neuronal circuitry. Simulation results demonstrated that the effects observed in human performance can be replicated using the two pattern generators with a mutually inhibiting coupling.

am

link (url) [BibTex]

link (url) [BibTex]


Locally weighted projection regression: An O(n) algorithm for incremental real time learning in high dimensional spaces

Vijayakumar, S., Schaal, S.

In Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), 1, pages: 288-293, Stanford, CA, 2000, clmc (inproceedings)

Abstract
Locally weighted projection regression is a new algorithm that achieves nonlinear function approximation in high dimensional spaces with redundant and irrelevant input dimensions. At its core, it uses locally linear models, spanned by a small number of univariate regressions in selected directions in input space. This paper evaluates different methods of projection regression and derives a nonlinear function approximator based on them. This nonparametric local learning system i) learns rapidly with second order learning methods based on incremental training, ii) uses statistically sound stochastic cross validation to learn iii) adjusts its weighting kernels based on local information only, iv) has a computational complexity that is linear in the number of inputs, and v) can deal with a large number of - possibly redundant - inputs, as shown in evaluations with up to 50 dimensional data sets. To our knowledge, this is the first truly incremental spatially localized learning method to combine all these properties.

am

link (url) [BibTex]

link (url) [BibTex]


Choosing nu in support vector regression with different noise models — theory and experiments

Chalimourda, A., Schölkopf, B., Smola, A.

In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, Neural Computing: New Challenges and Perspectives for the New Millennium, IEEE, International Joint Conference on Neural Networks, 2000 (inproceedings)

ei

[BibTex]

[BibTex]


Bayesian modelling of fMRI time series

, PADFR. Rasmussen, CE. Hansen, LK.

In pages: 754-760, (Editors: Sara A. Solla, Todd K. Leen and Klaus-Robert Müller), 2000 (inproceedings)

Abstract
We present a Hidden Markov Model (HMM) for inferring the hidden psychological state (or neural activity) during single trial fMRI activation experiments with blocked task paradigms. Inference is based on Bayesian methodology, using a combination of analytical and a variety of Markov Chain Monte Carlo (MCMC) sampling techniques. The advantage of this method is that detection of short time learning effects between repeated trials is possible since inference is based only on single trial experiments.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


v-Arc: Ensemble Learning in the Presence of Outliers

Rätsch, G., Schölkopf, B., Smola, A., Müller, K., Onoda, T., Mika, S.

In Advances in Neural Information Processing Systems 12, pages: 561-567, (Editors: SA Solla and TK Leen and K-R Müller), MIT Press, Cambridge, MA, USA, 13th Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)

Abstract
AdaBoost and other ensemble methods have successfully been applied to a number of classification tasks, seemingly defying problems of overfitting. AdaBoost performs gradient descent in an error function with respect to the margin, asymptotically concentrating on the patterns which are hardest to learn. For very noisy problems, however, this can be disadvantageous. Indeed, theoretical analysis has shown that the margin distribution, as opposed to just the minimal margin, plays a crucial role in understanding this phenomenon. Loosely speaking, some outliers should be tolerated if this has the benefit of substantially increasing the margin on the remaining points. We propose a new boosting algorithm which allows for the possibility of a pre-specified fraction of points to lie in the margin area or even on the wrong side of the decision boundary.

ei

PDF Web [BibTex]

PDF Web [BibTex]


Observational Learning with Modular Networks

Shin, H., Lee, H., Cho, S.

In Lecture Notes in Computer Science (LNCS 1983), LNCS 1983, pages: 126-132, Springer-Verlag, Heidelberg, International Conference on Intelligent Data Engineering and Automated Learning (IDEAL), July 2000 (inproceedings)

Abstract
Observational learning algorithm is an ensemble algorithm where each network is initially trained with a bootstrapped data set and virtual data are generated from the ensemble for training. Here we propose a modular OLA approach where the original training set is partitioned into clusters and then each network is instead trained with one of the clusters. Networks are combined with different weighting factors now that are inversely proportional to the distance from the input vector to the cluster centers. Comparison with bagging and boosting shows that the proposed approach reduces generalization error with a smaller number of networks employed.

ei

PDF [BibTex]

PDF [BibTex]


An Introduction to Kernel-Based Learning Algorithms

Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.

In Handbook of Neural Network Signal Processing, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)

ei

[BibTex]

[BibTex]


Entropy numbers for convex combinations and MLPs

Smola, A., Elisseeff, A., Schölkopf, B., Williamson, R.

In Advances in Large Margin Classifiers, pages: 369-387, Neural Information Processing Series, (Editors: AJ Smola and PL Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA,, October 2000 (inbook)

ei

[BibTex]

[BibTex]


Dynamics of a bouncing ball in human performance

Sternad, D., Duarte, M., Katsumata, H., Schaal, S.

Physical Review E, 63(011902):1-8, 2000, clmc (article)

Abstract
On the basis of a modified bouncing-ball model, we investigated whether human movements utilize principles of dynamic stability in their performance of a similar movement task. Stability analyses of the model provided predictions about conditions indicative of a dynamically stable period-one regime. In a series of experiments, human subjects bounced a ball rhythmically on a racket and displayed these conditions supporting that they attuned to and exploited the dynamic stability properties of the task.

am

link (url) [BibTex]

link (url) [BibTex]


Inverse kinematics for humanoid robots

Tevatia, G., Schaal, S.

In International Conference on Robotics and Automation (ICRA2000), pages: 294-299, San Fransisco, April 24-28, 2000, 2000, clmc (inproceedings)

Abstract
Real-time control of the endeffector of a humanoid robot in external coordinates requires computationally efficient solutions of the inverse kinematics problem. In this context, this paper investigates methods of resolved motion rate control (RMRC) that employ optimization criteria to resolve kinematic redundancies. In particular we focus on two established techniques, the pseudo inverse with explicit optimization and the extended Jacobian method. We prove that the extended Jacobian method includes pseudo-inverse methods as a special solution. In terms of computational complexity, however, pseudo-inverse and extended Jacobian differ significantly in favor of pseudo-inverse methods. Employing numerical estimation techniques, we introduce a computationally efficient version of the extended Jacobian with performance comparable to the original version . Our results are illustrated in simulation studies with a multiple degree-of-freedom robot, and were tested on a 30 degree-of-freedom robot. 

am

link (url) [BibTex]

link (url) [BibTex]


Fast and efficient incremental learning for high-dimensional movement systems

Vijayakumar, S., Schaal, S.

In International Conference on Robotics and Automation (ICRA2000), San Francisco, April 2000, 2000, clmc (inproceedings)

Abstract
We introduce a new algorithm, Locally Weighted Projection Regression (LWPR), for incremental real-time learning of nonlinear functions, as particularly useful for problems of autonomous real-time robot control that re-quires internal models of dynamics, kinematics, or other functions. At its core, LWPR uses locally linear models, spanned by a small number of univariate regressions in selected directions in input space, to achieve piecewise linear function approximation. The most outstanding properties of LWPR are that it i) learns rapidly with second order learning methods based on incremental training, ii) uses statistically sound stochastic cross validation to learn iii) adjusts its local weighting kernels based on only local information to avoid interference problems, iv) has a computational complexity that is linear in the number of inputs, and v) can deal with a large number ofâ??possibly redundant and/or irrelevantâ??inputs, as shown in evaluations with up to 50 dimensional data sets for learning the inverse dynamics of an anthropomorphic robot arm. To our knowledge, this is the first incremental neural network learning method to combine all these properties and that is well suited for complex on-line learning problems in robotics.

am

link (url) [BibTex]

link (url) [BibTex]


On-line learning for humanoid robot systems

Conradt, J., Tevatia, G., Vijayakumar, S., Schaal, S.

In Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), 1, pages: 191-198, Stanford, CA, 2000, clmc (inproceedings)

Abstract
Humanoid robots are high-dimensional movement systems for which analytical system identification and control methods are insufficient due to unknown nonlinearities in the system structure. As a way out, supervised learning methods can be employed to create model-based nonlinear controllers which use functions in the control loop that are estimated by learning algorithms. However, internal models for humanoid systems are rather high-dimensional such that conventional learning algorithms would suffer from slow learning speed, catastrophic interference, and the curse of dimensionality. In this paper we explore a new statistical learning algorithm, locally weighted projection regression (LWPR), for learning internal models in real-time. LWPR is a nonparametric spatially localized learning system that employs the less familiar technique of partial least squares regression to represent functional relationships in a piecewise linear fashion. The algorithm can work successfully in very high dimensional spaces and detect irrelevant and redundant inputs while only requiring a computational complexity that is linear in the number of input dimensions. We demonstrate the application of the algorithm in learning two classical internal models of robot control, the inverse kinematics and the inverse dynamics of an actual seven degree-of-freedom anthropomorphic robot arm. For both examples, LWPR can achieve excellent real-time learning results from less than one hour of actual training data.

am

link (url) [BibTex]

link (url) [BibTex]


Humanoid Robot DB

Kotosaka, S., Shibata, T., Schaal, S.

In Proceedings of the International Conference on Machine Automation (ICMA2000), pages: 21-26, 2000, clmc (inproceedings)

am

[BibTex]

[BibTex]


Nonlinear dynamical systems as movement primitives

Schaal, S., Kotosaka, S., Sternad, D.

In Humanoids2000, First IEEE-RAS International Conference on Humanoid Robots, CD-Proceedings, Cambridge, MA, September 2000, clmc (inproceedings)

Abstract
This paper explores the idea to create complex human-like movements from movement primitives based on nonlinear attractor dynamics. Each degree-of-freedom of a limb is assumed to have two independent abilities to create movement, one through a discrete dynamic system, and one through a rhythmic system. The discrete system creates point-to-point movements based on internal or external target specifications. The rhythmic system can add an additional oscillatory movement relative to the current position of the discrete system. In the present study, we develop appropriate dynamic systems that can realize the above model, motivate the particular choice of the systems from a biological and engineering point of view, and present simulation results of the performance of such movement primitives. The model was implemented for a drumming task on a humanoid robot

am

link (url) [BibTex]

link (url) [BibTex]


Real Time Learning in Humanoids: A challenge for scalability of Online Algorithms

Vijayakumar, S., Schaal, S.

In Humanoids2000, First IEEE-RAS International Conference on Humanoid Robots, CD-Proceedings, Cambridge, MA, September 2000, clmc (inproceedings)

Abstract
While recent research in neural networks and statistical learning has focused mostly on learning from finite data sets without stringent constraints on computational efficiency, there is an increasing number of learning problems that require real-time performance from an essentially infinite stream of incrementally arriving data. This paper demonstrates how even high-dimensional learning problems of this kind can successfully be dealt with by techniques from nonparametric regression and locally weighted learning. As an example, we describe the application of one of the most advanced of such algorithms, Locally Weighted Projection Regression (LWPR), to the on-line learning of the inverse dynamics model of an actual seven degree-of-freedom anthropomorphic robot arm. LWPR's linear computational complexity in the number of input dimensions, its inherent mechanisms of local dimensionality reduction, and its sound learning rule based on incremental stochastic leave-one-out cross validation allows -- to our knowledge for the first time -- implementing inverse dynamics learning for such a complex robot with real-time performance. In our sample task, the robot acquires the local inverse dynamics model needed to trace a figure-8 in only 60 seconds of training.

am

link (url) [BibTex]

link (url) [BibTex]


Advances in Large Margin Classifiers

Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D.

pages: 422, Neural Information Processing, MIT Press, Cambridge, MA, USA, October 2000 (book)

Abstract
The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.

ei

Web [BibTex]

Web [BibTex]


Transductive Inference for Estimating Values of Functions

Chapelle, O., Vapnik, V., Weston, J.

In Advances in Neural Information Processing Systems 12, pages: 421-427, (Editors: Solla, S.A. , T.K. Leen, K-R Müller), MIT Press, Cambridge, MA, USA, Thirteenth Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)

Abstract
We introduce an algorithm for estimating the values of a function at a set of test points $x_1^*,dots,x^*_m$ given a set of training points $(x_1,y_1),dots,(x_ell,y_ell)$ without estimating (as an intermediate step) the regression function. We demonstrate that this direct (transductive) way for estimating values of the regression (or classification in pattern recognition) is more accurate than the traditional one based on two steps, first estimating the function and then calculating the values of this function at the points of interest.

ei

PDF Web [BibTex]

PDF Web [BibTex]


A Meanfield Approach to the Thermodynamics of a Protein-Solvent System with Application to the Oligomerization of the Tumour Suppressor p53.

Noolandi, J. Davison, TS. Vokel, A. Nie, F. Kay, C. Arrowsmith, C.

Proceedings of the National Academy of Sciences of the United States of America, 97(18):9955-9960, August 2000 (article)

ei

Web [BibTex]

Web [BibTex]


A High Resolution and Accurate Pentium Based Timer

Ong, CS. Wong, F. Lai, WK.

In 2000 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


Invariant feature extraction and classification in kernel spaces

Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Smola, A., Müller, K.

In Advances in neural information processing systems 12, pages: 526-532, (Editors: SA Solla and TK Leen and K-R Müller), MIT Press, Cambridge, MA, USA, 13th Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)

ei

PDF Web [BibTex]

PDF Web [BibTex]