Header logo is


2019


Towards Geometric Understanding of Motion
Towards Geometric Understanding of Motion

Ranjan, A.

University of Tübingen, December 2019 (phdthesis)

Abstract

The motion of the world is inherently dependent on the spatial structure of the world and its geometry. Therefore, classical optical flow methods try to model this geometry to solve for the motion. However, recent deep learning methods take a completely different approach. They try to predict optical flow by learning from labelled data. Although deep networks have shown state-of-the-art performance on classification problems in computer vision, they have not been as effective in solving optical flow. The key reason is that deep learning methods do not explicitly model the structure of the world in a neural network, and instead expect the network to learn about the structure from data. We hypothesize that it is difficult for a network to learn about motion without any constraint on the structure of the world. Therefore, we explore several approaches to explicitly model the geometry of the world and its spatial structure in deep neural networks.

The spatial structure in images can be captured by representing it at multiple scales. To represent multiple scales of images in deep neural nets, we introduce a Spatial Pyramid Network (SpyNet). Such a network can leverage global information for estimating large motions and local information for estimating small motions. We show that SpyNet significantly improves over previous optical flow networks while also being the smallest and fastest neural network for motion estimation. SPyNet achieves a 97% reduction in model parameters over previous methods and is more accurate.

The spatial structure of the world extends to people and their motion. Humans have a very well-defined structure, and this information is useful in estimating optical flow for humans. To leverage this information, we create a synthetic dataset for human optical flow using a statistical human body model and motion capture sequences. We use this dataset to train deep networks and see significant improvement in the ability of the networks to estimate human optical flow.

The structure and geometry of the world affects the motion. Therefore, learning about the structure of the scene together with the motion can benefit both problems. To facilitate this, we introduce Competitive Collaboration, where several neural networks are constrained by geometry and can jointly learn about structure and motion in the scene without any labels. To this end, we show that jointly learning single view depth prediction, camera motion, optical flow and motion segmentation using Competitive Collaboration achieves state-of-the-art results among unsupervised approaches.

Our findings provide support for our hypothesis that explicit constraints on structure and geometry of the world lead to better methods for motion estimation.

ps

PhD Thesis [BibTex]

2019


PhD Thesis [BibTex]


no image
Robot Learning for Muscular Systems

Büchler, D.

Technical University Darmstadt, Germany, December 2019 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Real Time Probabilistic Models for Robot Trajectories

Gomez-Gonzalez, S.

Technical University Darmstadt, Germany, December 2019 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Reinforcement Learning for a Two-Robot Table Tennis Simulation

Li, G.

RWTH Aachen University, Germany, July 2019 (mastersthesis)

ei

[BibTex]

[BibTex]


The acoustic hologram and particle manipulation with structured acoustic fields
The acoustic hologram and particle manipulation with structured acoustic fields

Melde, K.

Karlsruher Institut für Technologie (KIT), May 2019 (phdthesis)

Abstract
This thesis presents holograms as a novel approach to create arbitrary ultrasound fields. It is shown how any wavefront can simply be encoded in the thickness profile of a phase plate. Contemporary 3D-printers enable fabrication of structured surfaces with feature sizes corresponding to wavelengths of ultrasound up to 7.5 MHz in water—covering the majority of medical and industrial applications. The whole workflow for designing and creating acoustic holograms has been developed and is presented in this thesis. To reconstruct the encoded fields a single transducer element is sufficient. Arbitrary fields are demonstrated in transmission and reflection configurations in water and air and validated by extensive hydrophone scans. To complement these time-consuming measurements a new approach, based on thermography, is presented, which enables volumetric sound field scans in just a few seconds. Several original experiments demonstrate the advantages of using acoustic holograms for particle manipulation. Most notably, directed parallel assembly of microparticles in the shape of a projected acoustic image has been shown and extended to a fabrication method by fusing the particles in a polymerization reaction. Further, seemingly dynamic propulsion from a static hologram is demonstrated by controlling the phase gradient along a projected track. The necessary complexity to create ultrasound fields with set amplitude and phase distributions is easily managed using acoustic holograms. The acoustic hologram is a simple and cost-effective tool for shaping ultrasound fields with high-fidelity. It is expected to have an impact in many applications where ultrasound is employed.

pf

link (url) DOI [BibTex]


Fast and Resource-Efficient Control of Wireless Cyber-Physical Systems
Fast and Resource-Efficient Control of Wireless Cyber-Physical Systems

Baumann, D.

KTH Royal Institute of Technology, Stockholm, Febuary 2019 (phdthesis)

ics

PDF [BibTex]

PDF [BibTex]


no image
X-ray microscopic characterization of high-Tc-supercoductors using image processing

Bihler, M.

Universität Stuttgart, Stuttgart, 2019 (mastersthesis)

mms

[BibTex]


no image
Learning Transferable Representations

Rojas-Carulla, M.

University of Cambridge, UK, 2019 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Sample-efficient deep reinforcement learning for continuous control

Gu, S.

University of Cambridge, UK, 2019 (phdthesis)

ei

[BibTex]


Max Planck Institute for Intelligent Systems - Highlights
Max Planck Institute for Intelligent Systems - Highlights
2019 (mpi_year_book)

Abstract
In the future, artificially intelligent systems will substantially change the way we live, work, and communicate. Intelligent systems will become increasingly important in all spheres of life – as virtual systems on the Internet, or as cyber-physical systems in the real world. Artificial intelligence (AI) will be used for autonomous driving, as well as to diagnose and fight diseases, or to carry out emergency operations that are too dangerous for humans. This is just the beginning.

MPI IS Yearbook 2019 (en) MPI IS Jahresbericht 2019 (de) [BibTex]


no image
Ferromagnetic colloids in liquid crystal solvents

Zarubin, G.

Universität Stuttgart, Stuttgart, 2019 (phdthesis)

icm

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Fluctuating interface with a pinning potential

Pranjić, Daniel

Universität Stuttgart, Stuttgart, 2019 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Spatial Filtering based on Riemannian Manifold for Brain-Computer Interfacing

Xu, J.

Technical University of Munich, Germany, 2019 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Novel X-ray lenses for direct and coherent imaging

Sanli, U. T.

Universität Stuttgart, Stuttgart, 2019 (phdthesis)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Quantification of tumor heterogeneity using PET/MRI and machine learning

Katiyar, P.

Eberhard Karls Universität Tübingen, Germany, 2019 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Controlling pattern formation in the confined Schnakenberg model

Beyer, David Bernhard

Universität Stuttgart, Stuttgart, 2019 (mastersthesis)

icm

[BibTex]

[BibTex]


Dynamics of self-propelled colloids and their application as active matter
Dynamics of self-propelled colloids and their application as active matter

Choudhury, U.

University of Groningen, Zernike Institute for Advanced Materials, 2019 (phdthesis)

Abstract
In this thesis, the behavior of active particles spanning from single particle dynamics to collective behavior of many particles is explored. Active colloids are out-of equilibrium systems that have been studied extensively over the past 15 years. This thesis addresses several phenomena that arise in the field of active colloids.

pf

link (url) [BibTex]

link (url) [BibTex]


no image
Interfaces in fluids of ionic liquid crystals

Bartsch, H.

Universität Stuttgart, Stuttgart, 2019 (phdthesis)

icm

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Actively Learning Dynamical Systems with Gaussian Processes

Buisson-Fenet, M.

Mines ParisTech, PSL University, 2019 (mastersthesis)

Abstract
Predicting the behavior of complex systems is of great importance in many fields such as engineering, economics or meteorology. The evolution of such systems often follows a certain structure, which can be induced, for example from the laws of physics or of market forces. Mathematically, this structure is often captured by differential equations. The internal functional dependencies, however, are usually unknown. Hence, using machine learning approaches that recreate this structure directly from data is a promising alternative to designing physics-based models. In particular, for high dimensional systems with nonlinear effects, this can be a challenging task. Learning dynamical systems is different from the classical machine learning tasks, such as image processing, and necessitates different tools. Indeed, dynamical systems can be actuated, often by applying torques or voltages. Hence, the user has a power of decision over the system, and can drive it to certain states by going through the dynamics. Actuating this system generates data, from which a machine learning model of the dynamics can be trained. However, gathering informative data that is representative of the whole state space remains a challenging task. The question of active learning then becomes important: which control inputs should be chosen by the user so that the data generated during an experiment is informative, and enables efficient training of the dynamics model? In this context, Gaussian processes can be a useful framework for approximating system dynamics. Indeed, they perform well on small and medium sized data sets, as opposed to most other machine learning frameworks. This is particularly important considering data is often costly to generate and process, most of all when producing it involves actuating a complex physical system. Gaussian processes also yield a notion of uncertainty, which indicates how sure the model is about its predictions. In this work, we investigate in a principled way how to actively learn dynamical systems, by selecting control inputs that generate informative data. We model the system dynamics by a Gaussian process, and use information-theoretic criteria to identify control trajectories that maximize the information gain. Thus, the input space can be explored efficiently, leading to a data-efficient training of the model. We propose several methods, investigate their theoretical properties and compare them extensively in a numerical benchmark. The final method proves to be efficient at generating informative data. Thus, it yields the lowest prediction error with the same amount of samples on most benchmark systems. We propose several variants of this method, allowing the user to trade off computations with prediction accuracy, and show it is versatile enough to take additional objectives into account.

ics

[BibTex]

[BibTex]

2011


no image
Crowdsourcing for optimisation of deconvolution methods via an iPhone application

Lang, A.

Hochschule Reutlingen, Germany, April 2011 (mastersthesis)

ei

[BibTex]

2011


[BibTex]


no image
Model Learning in Robot Control

Nguyen-Tuong, D.

Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Simulation einer fast kritischen binären Flüssigkeit in einem Temperaturgradienten

Single, F.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Preparation of high-efficiency nanostructures of crystalline silicon at low temperatures, as catalyzed by metals: The decisive role of interface thermodynamics

Wang, Zumin, Jeurgens, Lars P. H., Mittemeijer, Eric J.

2011 (mpi_year_book)

Abstract
Metals may help to convert semiconductors from a disordered (amorphous) to an ordered (crystalline) form at low temperatures. A general, quantitative model description has been developed on the basis of interface thermodynamics, which provides fundamental understanding of such so-called metal-induced crystallization (MIC) of amorphous semiconductors. This fundamental understanding can allow the low-temperature (< 200 ºC) manufacturing of high-efficiency solar cells and crystalline-Si-based nanostructures on cheap and flexible substrates such as glasses, plastics and possibly even papers.

link (url) [BibTex]


no image
The sweet coat of living cells – from supramolecular organization and dynamics to biological function

Richter, Ralf

2011 (mpi_year_book)

Abstract
Many biological cells endow themselves with a sugar-rich coat that plays a key role in the protection of the cell and in structuring and communicating with its environment. An outstanding property of these pericellular coats is their dynamic self-organization into strongly hydrated and gel-like meshworks. Tailor-made model systems that are constructed from the molecular building blocks of pericellular coats can help to understand how the coats function.

link (url) [BibTex]


no image
Struktur dichter ionischer Flüssigkeiten

Dannenmann, O.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Parallelisierung Stokesscher Dynamik für Graphikprozessoren zur Simulation kolloidaler Suspensionen

Kopp, M.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Diffusion in Wandnähe

Müller, J.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Iterative path integral stochastic optimal control: Theory and applications to motor control

Theodorou, E. A.

University of Southern California, University of Southern California, Los Angeles, CA, 2011 (phdthesis)

am

PDF [BibTex]

PDF [BibTex]


no image
Learning of grasp selection based on shape-templates

Herzog, A.

Karlsruhe Institute of Technology, 2011 (mastersthesis)

am

[BibTex]

[BibTex]


no image
Ferromagnetism of ZnO influenced by physical and chemical treatment

Chen, Y.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Herstellung und Charakterisierung von ultradünnen, funktionellen CoFeB Filmen

Streckenbach, F.

Hochschule Esslingen / Hochschule Aalen, Esslingen / Aalen, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Hydrogen adsorption on metal-organic frameworks

Streppel, B.

Universität Stuttgart, Stuttgart, 2011 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Piezo driven strain effects on magneto-crystalline anisotropy

Badr, E.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Magnetooptische Untersuchungen an granularen und beschichteten MgB2 Filmen

Stahl, C.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Mikromagnetismus der Wechselwirkung von Spinwellen mit Domänenwänden in Ferromagneten

Macke, S.

Universität Stuttgart, Stuttgart, 2011 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Herstellung und Qualifizierung gesputterter Magnesiumdiboridschichten

Breyer, F.

Hochschule Aalen, Aalen, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Study of krypton/xenon storage and separation in microporous frameworks

Soleimani Dorcheh, A.

Universität Darmstadt, Darmstadt, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]