Header logo is


2020


Utilizing Interviews and Thematic Analysis to Uncover Specifications for a Companion Robot
Utilizing Interviews and Thematic Analysis to Uncover Specifications for a Companion Robot

Burns, R. B., Seifi, H., Lee, H., Kuchenbecker, K. J.

Workshop paper (2 pages) presented at the ICSR Workshop on Enriching HRI Research with Qualitative Methods, Virtual, November 2020 (misc)

Abstract
We will share our experiences designing and conducting structured video-conferencing interviews with autism specialists and utilizing thematic analysis to create qualitative requirements and quantitative specifications for a touch-perceiving robot companion tailored for children with autism. We will also explain how we wrote about our qualitative approaches for a journal setting.

hi

link (url) [BibTex]

2020


link (url) [BibTex]


Characterization of a Magnetic Levitation Haptic Interface for Realistic Tool-Based Interactions
Characterization of a Magnetic Levitation Haptic Interface for Realistic Tool-Based Interactions

Lee, H., Tombak, G. I., Park, G., Kuchenbecker, K. J.

Work-in-progress poster presented at EuroHaptics, Leiden, The Netherlands, September 2020 (misc)

Abstract
We introduce our recent study on the characterization of a commercial magnetic levitation haptic interface (MagLev 200, Butterfly Haptics LLC) for realistic high-bandwidth interactions. This device’s haptic rendering scheme can provide strong 6-DoF (force and torque) feedback without friction at all poses in its small workspace. The objective of our study is to enable the device to accurately render realistic multidimensional vibrotactile stimuli measured from a stylus-like tool. Our approach is to characterize the dynamics between the commanded wrench and the resulting translational acceleration across the frequency range of interest. To this end, we first custom-designed and attached a pen-shaped manipulandum (11.5 cm, aluminum) to the top of the MagLev 200’s end-effector for better usability in grasping. An accelerometer (ADXL354, Analog Devices) was rigidly mounted inside the manipulandum. Then, we collected a data set where the input is a 30-second-long force and/or torque signal commanded as a sweep function from 10 to 500 Hz; the output is the corresponding acceleration measurement, which we collected both with and without a user holding the handle. We succeeded at fitting both non-parametric and parametric versions of the transfer functions for both scenarios, with a fitting accuracy of about 95% for the parametric transfer functions. In the future, we plan to find the best method of applying the inverse parametric transfer function to our system. We will then employ that compensation method in a user study to evaluate the realism of different algorithms for reducing the dimensionality of tool-based vibrotactile cues.

hi

link (url) [BibTex]

link (url) [BibTex]


Tactile Textiles: An Assortment of Fabric-Based Tactile Sensors for Contact Force and Contact Location
Tactile Textiles: An Assortment of Fabric-Based Tactile Sensors for Contact Force and Contact Location

Burns, R. B., Thomas, N., Lee, H., Faulkner, R., Kuchenbecker, K. J.

Hands-on demonstration presented at EuroHaptics, Leiden, The Netherlands, September 2020, Rachael Bevill Burns, Neha Thomas, and Hyosang Lee contributed equally to this publication (misc)

Abstract
Fabric-based tactile sensors are promising for the construction of robotic skin due to their soft and flexible nature. Conductive fabric layers can be used to form piezoresistive structures that are sensitive to contact force and/or contact location. This demonstration showcases three diverse fabric-based tactile sensors we have created. The first detects dynamic tactile events anywhere within a region on a robot’s body. The second design measures the precise location at which a single low-force contact is applied. The third sensor uses electrical resistance tomography to output both the force and location of multiple simultaneous contacts applied across a surface.

hi

Project Page Project Page [BibTex]

Project Page Project Page [BibTex]


no image
Estimating Human Handshape by Feeling the Wrist

Forte, M., Young, E. M., Kuchenbecker, K. J.

Work-in-progress poster presented at EuroHaptics, Leiden, The Netherlands, September 2020 (misc)

hi

[BibTex]

[BibTex]


Sweat Softens the Outermost Layer of the Human Finger Pad: Evidence from Simulations and Experiments
Sweat Softens the Outermost Layer of the Human Finger Pad: Evidence from Simulations and Experiments

Nam, S., Kuchenbecker, K. J.

Work-in-progress poster presented at EuroHaptics, Leiden, The Netherlands, September 2020, Award for best poster in 2020 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Intermediate Ridges Amplify Mechanoreceptor Strains in Static and Dynamic Touch

Serhat, G., Kuchenbecker, K. J.

Work-in-progress poster presented at EuroHaptics, Leiden, The Netherlands, September 2020 (misc)

hi

[BibTex]

[BibTex]


no image
Seeing Through Touch: Contact-Location Sensing and Tactile Feedback for Prosthetic Hands

Thomas, N., Kuchenbecker, K. J.

Work-in-progress poster presented at EuroHaptics, Leiden, The Netherlands, September 2020 (misc)

Abstract
Locating and picking up an object without vision is a simple task for able-bodied people, due in part to their rich tactile perception capabilities. The same cannot be said for users of standard myoelectric prostheses, who must rely largely on visual cues to successfully interact with the environment. To enable prosthesis users to locate and grasp objects without looking at them, we propose two changes: adding specialized contact-location sensing to the dorsal and palmar aspects of the prosthetic hand’s fingers, and providing the user with tactile feedback of where an object touches the fingers. To evaluate the potential utility of these changes, we developed a simple, sensitive, fabric-based tactile sensor which provides continuous contact location information via a change in voltage of a voltage divider circuit. This sensor was wrapped around the fingers of a commercial prosthetic hand (Ottobock SensorHand Speed). Using an ATI Nano17 force sensor, we characterized the tactile sensor’s response to normal force at distributed contact locations and obtained an average detection threshold of 0.63 +/- 0.26 N. We also confirmed that the voltage-to-location mapping is linear (R squared = 0.99). Sensor signals were adapted to the stationary vibrotactile funneling illusion to provide haptic feedback of contact location. These preliminary results indicate a promising system that imitates a key aspect of the sensory capabilities of the intact hand. Future work includes testing the system in a modified reach-grasp-and-lift study, in which participants must accomplish the task blindfolded.

hi

[BibTex]

[BibTex]


Do Touch Gestures Affect How Electrovibration Feels?
Do Touch Gestures Affect How Electrovibration Feels?

Vardar, Y., Javot, B., Kuchenbecker, K. J.

Hands-on demonstration presented at EuroHaptics, Leiden, The Netherlands, September 2020 (misc)

Abstract
Our interactions with current electronic devices involve different finger gestures such as tapping, sliding, and pinching. Hence, when electrovibration technology is used for generating tactile feedback on these devices, the interaction of the user will not be limited to only one sliding finger. Does the perception of an electrovibration stimulus depend on the gesture being used? This demonstration lets attendees answer this question for themselves by interacting with an electrostatic display using four representative gestures: one finger stationary, one finger sliding, two fingers sliding, and one finger stationary and another finger sliding.

hi

[BibTex]

[BibTex]


no image
Haptify: a Comprehensive Benchmarking System for Grounded Force-Feedback Haptic Devices

Fazlollahi, F., Kuchenbecker, K. J.

Work-in-progress poster presented at EuroHaptics, Leiden, The Netherlands, September 2020 (misc)

hi

[BibTex]

[BibTex]


no image
Vision-based Force Estimation for a da Vinci Instrument Using Deep Neural Networks

Lee, Y., Husin, H. M., Forte, M., Lee, S., Kuchenbecker, K. J.

Extended abstract presented as an Emerging Technology ePoster at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Cleveland, Ohio, USA, August 2020 (misc) Accepted

hi

[BibTex]

[BibTex]


Learning Variable Impedance Control for Contact Sensitive Tasks
Learning Variable Impedance Control for Contact Sensitive Tasks

Bogdanovic, M., Khadiv, M., Righetti, L.

IEEE Robotics and Automation Letters ( Early Access ), IEEE, July 2020 (article)

Abstract
Reinforcement learning algorithms have shown great success in solving different problems ranging from playing video games to robotics. However, they struggle to solve delicate robotic problems, especially those involving contact interactions. Though in principle a policy outputting joint torques should be able to learn these tasks, in practice we see that they have difficulty to robustly solve the problem without any structure in the action space. In this paper, we investigate how the choice of action space can give robust performance in presence of contact uncertainties. We propose to learn a policy that outputs impedance and desired position in joint space as a function of system states without imposing any other structure to the problem. We compare the performance of this approach to torque and position control policies under different contact uncertainties. Extensive simulation results on two different systems, a hopper (floating-base) with intermittent contacts and a manipulator (fixed-base) wiping a table, show that our proposed approach outperforms policies outputting torque or position in terms of both learning rate and robustness to environment uncertainty.

mg

DOI [BibTex]

DOI [BibTex]


Walking Control Based on Step Timing Adaptation
Walking Control Based on Step Timing Adaptation

Khadiv, M., Herzog, A., Moosavian, S. A. A., Righetti, L.

IEEE Transactions on Robotics, 36, pages: 629 - 643, IEEE, June 2020 (article)

Abstract
Step adjustment can improve the gait robustness of biped robots; however, the adaptation of step timing is often neglected as it gives rise to nonconvex problems when optimized over several footsteps. In this article, we argue that it is not necessary to optimize walking over several steps to ensure gait viability and show that it is sufficient to merely select the next step timing and location. Using this insight, we propose a novel walking pattern generator that optimally selects step location and timing at every control cycle. Our approach is computationally simple compared to standard approaches in the literature, yet guarantees that any viable state will remain viable in the future. We propose a swing foot adaptation strategy and integrate the pattern generator with an inverse dynamics controller that does not explicitly control the center of mass nor the foot center of pressure. This is particularly useful for biped robots with limited control authority over their foot center of pressure, such as robots with point feet or passive ankles. Extensive simulations on a humanoid robot with passive ankles demonstrate the capabilities of the approach in various walking situations, including external pushes and foot slippage, and emphasize the importance of step timing adaptation to stabilize walking.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Physical Variables Underlying Tactile Stickiness during Fingerpad Detachment
Physical Variables Underlying Tactile Stickiness during Fingerpad Detachment

Nam, S., Vardar, Y., Gueorguiev, D., Kuchenbecker, K. J.

Frontiers in Neuroscience, 14(235):1-14, April 2020 (article)

Abstract
One may notice a relatively wide range of tactile sensations even when touching the same hard, flat surface in similar ways. Little is known about the reasons for this variability, so we decided to investigate how the perceptual intensity of light stickiness relates to the physical interaction between the skin and the surface. We conducted a psychophysical experiment in which nine participants actively pressed their finger on a flat glass plate with a normal force close to 1.5 N and detached it after a few seconds. A custom-designed apparatus recorded the contact force vector and the finger contact area during each interaction as well as pre- and post-trial finger moisture. After detaching their finger, participants judged the stickiness of the glass using a nine-point scale. We explored how sixteen physical variables derived from the recorded data correlate with each other and with the stickiness judgments of each participant. These analyses indicate that stickiness perception mainly depends on the pre-detachment pressing duration, the time taken for the finger to detach, and the impulse in the normal direction after the normal force changes sign; finger-surface adhesion seems to build with pressing time, causing a larger normal impulse during detachment and thus a more intense stickiness sensation. We additionally found a strong between-subjects correlation between maximum real contact area and peak pull-off force, as well as between finger moisture and impulse.

hi

link (url) DOI Project Page [BibTex]


Changes in Normal Force During Passive Dynamic Touch: Contact Mechanics and Perception
Changes in Normal Force During Passive Dynamic Touch: Contact Mechanics and Perception

Gueorguiev, D., Lambert, J., Thonnard, J., Kuchenbecker, K. J.

In Proceedings of the IEEE Haptics Symposium (HAPTICS), pages: 746-752, Washington, USA, March 2020 (inproceedings)

Abstract
Using a force-controlled robotic platform, we investigated the contact mechanics and psychophysical responses induced by negative and positive modulations in normal force during passive dynamic touch. In the natural state of the finger, the applied normal force modulation induces a correlated change in the tangential force. In a second condition, we applied talcum powder to the fingerpad, which induced a significant modification in the slope of the correlated tangential change. In both conditions, the same ten participants had to detect the interval that contained a decrease or an increase in the pre-stimulation normal force of 1 N. In the natural state, the 75% just noticeable difference for this task was found to be a ratio of 0.19 and 0.18 for decreases and increases, respectively. With talcum powder on the fingerpad, the normal force thresholds remained stable, following the Weber law of constant just noticeable differences, while the tangential force thresholds changed in the same way as the correlation slopes. This result suggests that participants predominantly relied on the normal force changes to perform the detection task. In addition, participants were asked to report whether the force decreased or increased. Their performance was generally poor at this second task even for above-threshold changes. However, their accuracy slightly improved with the talcum powder, which might be due to the reduced finger-surface friction.

hi

DOI [BibTex]

DOI [BibTex]


A Fabric-Based Sensing System for Recognizing Social Touch
A Fabric-Based Sensing System for Recognizing Social Touch

Burns, R. B., Lee, H., Seifi, H., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, Washington, DC, USA, March 2020 (misc)

Abstract
We present a fabric-based piezoresistive tactile sensor system designed to detect social touch gestures on a robot. The unique sensor design utilizes three layers of low-conductivity fabric sewn together on alternating edges to form an accordion pattern and secured between two outer high-conductivity layers. This five-layer design demonstrates a greater resistance range and better low-force sensitivity than previous designs that use one layer of low-conductivity fabric with or without a plastic mesh layer. An individual sensor from our system can presently identify six different communication gestures – squeezing, patting, scratching, poking, hand resting without movement, and no touch – with an average accuracy of 90%. A layer of foam can be added beneath the sensor to make a rigid robot more appealing for humans to touch without inhibiting the system’s ability to register social touch gestures.

hi

Project Page [BibTex]

Project Page [BibTex]


Do Touch Gestures Affect How Electrovibration Feels?
Do Touch Gestures Affect How Electrovibration Feels?

Vardar, Y., Kuchenbecker, K. J.

Hands-on demonstration (1 page) presented at the IEEE Haptics Symposium, Washington, DC, USA, March 2020 (misc)

hi

[BibTex]

[BibTex]


Learning to Predict Perceptual Distributions of Haptic Adjectives
Learning to Predict Perceptual Distributions of Haptic Adjectives

Richardson, B. A., Kuchenbecker, K. J.

Frontiers in Neurorobotics, 13(116):1-16, Febuary 2020 (article)

Abstract
When humans touch an object with their fingertips, they can immediately describe its tactile properties using haptic adjectives, such as hardness and roughness; however, human perception is subjective and noisy, with significant variation across individuals and interactions. Recent research has worked to provide robots with similar haptic intelligence but was focused on identifying binary haptic adjectives, ignoring both attribute intensity and perceptual variability. Combining ordinal haptic adjective labels gathered from human subjects for a set of 60 objects with features automatically extracted from raw multi-modal tactile data collected by a robot repeatedly touching the same objects, we designed a machine-learning method that incorporates partial knowledge of the distribution of object labels into training; then, from a single interaction, it predicts a probability distribution over the set of ordinal labels. In addition to analyzing the collected labels (10 basic haptic adjectives) and demonstrating the quality of our method's predictions, we hold out specific features to determine the influence of individual sensor modalities on the predictive performance for each adjective. Our results demonstrate the feasibility of modeling both the intensity and the variation of haptic perception, two crucial yet previously neglected components of human haptic perception.

hi

DOI Project Page [BibTex]


no image
Exercising with Baxter: Preliminary Support for Assistive Social-Physical Human-Robot Interaction

Fitter, N. T., Mohan, M., Kuchenbecker, K. J., Johnson, M. J.

Journal of NeuroEngineering and Rehabilitation, 17(19), Febuary 2020 (article)

Abstract
Background: The worldwide population of older adults will soon exceed the capacity of assisted living facilities. Accordingly, we aim to understand whether appropriately designed robots could help older adults stay active at home. Methods: Building on related literature as well as guidance from experts in game design, rehabilitation, and physical and occupational therapy, we developed eight human-robot exercise games for the Baxter Research Robot, six of which involve physical human-robot contact. After extensive iteration, these games were tested in an exploratory user study including 20 younger adult and 20 older adult users. Results: Only socially and physically interactive games fell in the highest ranges for pleasantness, enjoyment, engagement, cognitive challenge, and energy level. Our games successfully spanned three different physical, cognitive, and temporal challenge levels. User trust and confidence in Baxter increased significantly between pre- and post-study assessments. Older adults experienced higher exercise, energy, and engagement levels than younger adults, and women rated the robot more highly than men on several survey questions. Conclusions: The results indicate that social-physical exercise with a robot is more pleasant, enjoyable, engaging, cognitively challenging, and energetic than similar interactions that lack physical touch. In addition to this main finding, researchers working in similar areas can build on our design practices, our open-source resources, and the age-group and gender differences that we found.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Compensating for Fingertip Size to Render Tactile Cues More Accurately
Compensating for Fingertip Size to Render Tactile Cues More Accurately

Young, E. M., Gueorguiev, D., Kuchenbecker, K. J., Pacchierotti, C.

IEEE Transactions on Haptics, 13(1):144-151, January 2020, Katherine J. Kuchenbecker and Claudio Pacchierotti contributed equally to this publication. (article)

Abstract
Fingertip haptic feedback offers advantages in many applications, including robotic teleoperation, gaming, and training. However, fingertip size and shape vary significantly across humans, making it difficult to design fingertip interfaces and rendering techniques suitable for everyone. This article starts with an existing data-driven haptic rendering algorithm that ignores fingertip size, and it then develops two software-based approaches to personalize this algorithm for fingertips of different sizes using either additional data or geometry. We evaluate our algorithms in the rendering of pre-recorded tactile sensations onto rubber casts of six different fingertips as well as onto the real fingertips of 13 human participants. Results on the casts show that both approaches significantly improve performance, reducing force error magnitudes by an average of 78% with respect to the standard non-personalized rendering technique. Congruent results were obtained for real fingertips, with subjects rating each of the two personalized rendering techniques significantly better than the standard non-personalized method.

hi

DOI [BibTex]

DOI [BibTex]


no image
A Real-Robot Dataset for Assessing Transferability of Learned Dynamics Models

Agudelo-España, D., Zadaianchuk, A., Wenk, P., Garg, A., Akpo, J., Grimminger, F., Viereck, J., Naveau, M., Righetti, L., Martius, G., Krause, A., Schölkopf, B., Bauer, S., Wüthrich, M.

IEEE International Conference on Robotics and Automation (ICRA), 2020 (conference) Accepted

am al ei mg

Project Page PDF [BibTex]

Project Page PDF [BibTex]


Getting in Touch with Children with Autism: Specialist Guidelines for a Touch-Perceiving Robot
Getting in Touch with Children with Autism: Specialist Guidelines for a Touch-Perceiving Robot

Burns, R. B., Seifi, H., Lee, H., Kuchenbecker, K. J.

Paladyn. Journal of Behavioral Robotics, 2020 (article) Accepted

Abstract
Children with autism need innovative solutions that help them learn to master everyday experiences and cope with stressful situations. We propose that socially assistive robot companions could better understand and react to a child’s needs if they utilized tactile sensing. We examined the existing relevant literature to create an initial set of six tactile-perception requirements, and we then evaluated these requirements through interviews with 11 experienced autism specialists from a variety of backgrounds. Thematic analysis of the comments shared by the specialists revealed three overarching themes: the touch-seeking and touch-avoiding behavior of autistic children, their individual differences and customization needs, and the roles that a touch-perceiving robot could play in such interactions. Using the interview study feedback, we refined our initial list into seven qualitative requirements that describe robustness and maintainability, sensing range, feel, gesture identification, spatial, temporal, and adaptation attributes for the touch-perception system of a robot companion for children with autism. Lastly, by utilizing the literature and current best practices in tactile sensor development and signal processing, we transformed these qualitative requirements into quantitative specifications. We discuss the implications of these requirements for future HRI research in the sensing, computing, and user research communities.

hi

Project Page [BibTex]

2011


no image
Toward simple control for complex, autonomous robotic applications: combining discrete and rhythmic motor primitives

Degallier, S., Righetti, L., Gay, S., Ijspeert, A.

Autonomous Robots, 31(2-3):155-181, October 2011 (article)

Abstract
Vertebrates are able to quickly adapt to new environments in a very robust, seemingly effortless way. To explain both this adaptivity and robustness, a very promising perspective in neurosciences is the modular approach to movement generation: Movements results from combinations of a finite set of stable motor primitives organized at the spinal level. In this article we apply this concept of modular generation of movements to the control of robots with a high number of degrees of freedom, an issue that is challenging notably because planning complex, multidimensional trajectories in time-varying environments is a laborious and costly process. We thus propose to decrease the complexity of the planning phase through the use of a combination of discrete and rhythmic motor primitives, leading to the decoupling of the planning phase (i.e. the choice of behavior) and the actual trajectory generation. Such implementation eases the control of, and the switch between, different behaviors by reducing the dimensionality of the high-level commands. Moreover, since the motor primitives are generated by dynamical systems, the trajectories can be smoothly modulated, either by high-level commands to change the current behavior or by sensory feedback information to adapt to environmental constraints. In order to show the generality of our approach, we apply the framework to interactive drumming and infant crawling in a humanoid robot. These experiments illustrate the simplicity of the control architecture in terms of planning, the integration of different types of feedback (vision and contact) and the capacity of autonomously switching between different behaviors (crawling and simple reaching).

mg

link (url) DOI [BibTex]

2011


link (url) DOI [BibTex]


no image
Learning Force Control Policies for Compliant Manipulation

Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4639-4644, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Developing robots capable of fine manipulation skills is of major importance in order to build truly assistive robots. These robots need to be compliant in their actuation and control in order to operate safely in human environments. Manipulation tasks imply complex contact interactions with the external world, and involve reasoning about the forces and torques to be applied. Planning under contact conditions is usually impractical due to computational complexity, and a lack of precise dynamics models of the environment. We present an approach to acquiring manipulation skills on compliant robots through reinforcement learning. The initial position control policy for manipulation is initialized through kinesthetic demonstration. We augment this policy with a force/torque profile to be controlled in combination with the position trajectories. We use the Policy Improvement with Path Integrals (PI2) algorithm to learn these force/torque profiles by optimizing a cost function that measures task success. We demonstrate our approach on the Barrett WAM robot arm equipped with a 6-DOF force/torque sensor on two different manipulation tasks: opening a door with a lever door handle, and picking up a pen off the table. We show that the learnt force control policies allow successful, robust execution of the tasks.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Control of legged robots with optimal distribution of contact forces

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 11th IEEE-RAS International Conference on Humanoid Robots, pages: 318-324, IEEE, Bled, Slovenia, 2011 (inproceedings)

Abstract
The development of agile and safe humanoid robots require controllers that guarantee both high tracking performance and compliance with the environment. More specifically, the control of contact interaction is of crucial importance for robots that will actively interact with their environment. Model-based controllers such as inverse dynamics or operational space control are very appealing as they offer both high tracking performance and compliance. However, while widely used for fully actuated systems such as manipulators, they are not yet standard controllers for legged robots such as humanoids. Indeed such robots are fundamentally different from manipulators as they are underactuated due to their floating-base and subject to switching contact constraints. In this paper we present an inverse dynamics controller for legged robots that use torque redundancy to create an optimal distribution of contact constraints. The resulting controller is able to minimize, given a desired motion, any quadratic cost of the contact constraints at each instant of time. In particular we show how this can be used to minimize tangential forces during locomotion, therefore significantly improving the locomotion of legged robots on difficult terrains. In addition to the theoretical result, we present simulations of a humanoid and a quadruped robot, as well as experiments on a real quadruped robot that demonstrate the advantages of the controller.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motion Primitive Goals for Robust Manipulation

Stulp, F., Theodorou, E., Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 325-331, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Applying model-free reinforcement learning to manipulation remains challenging for several reasons. First, manipulation involves physical contact, which causes discontinuous cost functions. Second, in manipulation, the end-point of the movement must be chosen carefully, as it represents a grasp which must be adapted to the pose and shape of the object. Finally, there is uncertainty in the object pose, and even the most carefully planned movement may fail if the object is not at the expected position. To address these challenges we 1) present a simplified, computationally more efficient version of our model-free reinforcement learning algorithm PI2; 2) extend PI2 so that it simultaneously learns shape parameters and goal parameters of motion primitives; 3) use shape and goal learning to acquire motion primitives that are robust to object pose uncertainty. We evaluate these contributions on a manipulation platform consisting of a 7-DOF arm with a 4-DOF hand.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inverse Dynamics Control of Floating-Base Robots with External Constraints: a Unified View

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 IEEE International Conference on Robotics and Automation, pages: 1085-1090, IEEE, Shanghai, China, 2011 (inproceedings)

Abstract
Inverse dynamics controllers and operational space controllers have proved to be very efficient for compliant control of fully actuated robots such as fixed base manipulators. However legged robots such as humanoids are inherently different as they are underactuated and subject to switching external contact constraints. Recently several methods have been proposed to create inverse dynamics controllers and operational space controllers for these robots. In an attempt to compare these different approaches, we develop a general framework for inverse dynamics control and show that these methods lead to very similar controllers. We are then able to greatly simplify recent whole-body controllers based on operational space approaches using kinematic projections, bringing them closer to efficient practical implementations. We also generalize these controllers such that they can be optimal under an arbitrary quadratic cost in the commands.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Operational Space Control of Constrained and Underactuated Systems

Mistry, M., Righetti, L.

In Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA, June 2011 (inproceedings)

Abstract
The operational space formulation (Khatib, 1987), applied to rigid-body manipulators, describes how to decouple task-space and null-space dynamics, and write control equations that correspond only to forces at the end-effector or, alternatively, only to motion within the null-space. We would like to apply this useful theory to modern humanoids and other legged systems, for manipulation or similar tasks, however these systems present additional challenges due to their underactuated floating bases and contact states that can dynamically change. In recent work, Sentis et al. derived controllers for such systems by implementing a task Jacobian projected into a space consistent with the supporting constraints and underactuation (the so called "support consistent reduced Jacobian"). Here, we take a new approach to derive operational space controllers for constrained underactuated systems, by first considering the operational space dynamics within "projected inverse-dynamics" (Aghili, 2005), and subsequently resolving underactuation through the addition of dynamically consistent control torques. Doing so results in a simplified control solution compared with previous results, and importantly yields several new insights into the underlying problem of operational space control in constrained environments: 1) Underactuated systems, such as humanoid robots, cannot in general completely decouple task and null-space dynamics. However, 2) there may exist an infinite number of control solutions to realize desired task-space dynamics, and 3) these solutions involve the addition of dynamically consistent null-space motion or constraint forces (or combinations of both). In light of these findings, we present several possible control solutions, with varying optimization criteria, and highlight some of their practical consequences.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Online movement adaptation based on previous sensor experiences

Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 365-371, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Personal robots can only become widespread if they are capable of safely operating among humans. In uncertain and highly dynamic environments such as human households, robots need to be able to instantly adapt their behavior to unforseen events. In this paper, we propose a general framework to achieve very contact-reactive motions for robotic grasping and manipulation. Associating stereotypical movements to particular tasks enables our system to use previous sensor experiences as a predictive model for subsequent task executions. We use dynamical systems, named Dynamic Movement Primitives (DMPs), to learn goal-directed behaviors from demonstration. We exploit their dynamic properties by coupling them with the measured and predicted sensor traces. This feedback loop allows for online adaptation of the movement plan. Our system can create a rich set of possible motions that account for external perturbations and perception uncertainty to generate truly robust behaviors. As an example, we present an application to grasping with the WAM robot arm.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]