365 results (BibTeX)

2017


Thumb md pilqr cover
Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning

Chebotar, Y., Hausman, K., Zhang, M., Sukhatme, G., Schaal, S., Levine, S.

International Conference on Machine Learning (ICML) 2017, International Conference on Machine Learning (ICML), August 2017 (conference)

am

pdf video [BibTex]

2017


pdf video [BibTex]


Local Bayesian Optimization of Motor Skills

Akrour, R., Sorokin, D., Peters, J., Neumann, G.

Proceedings of the 34th International Conference on Machine Learning (ICML 2017), 2017 (conference) Accepted

am ei

[BibTex]

[BibTex]


Investigating Music Imagery as a Cognitive Paradigm for Low-Cost Brain-Computer Interfaces

Grossberger, L., Hohmann, M., Peters, J., M., G.

Proceedings of the 7th Graz Brain-Computer Interface Conference (GBCIC 2017), 2017 (conference) Accepted

am ei

[BibTex]

[BibTex]


Bayesian Regression for Artifact Correction in Electroencephalography

Fiebig, K., Jayaram, V., Hesse, T., Blank, A., Peters, J., M., G.

Proceedings of the 7th Graz Brain-Computer Interface Conference (GBCIC 2017), 2017 (conference) Accepted

am ei

[BibTex]

[BibTex]


Thumb md octo turned
Real-time Perception meets Reactive Motion Generation

Kappler, D., Meier, F., Issac, J., Mainprice, J., Garcia Cifuentes, C., Wüthrich, M., Berenz, V., Schaal, S., Ratliff, N., Bohg, J.

https://arxiv.org/abs/1703.03512, ArXiv, 2017 (article)

Abstract
We address the challenging problem of robotic grasping and manipulation in the presence of uncertainty. This uncertainty is due to noisy sensing, inaccurate models and hard-to-predict environment dynamics. Our approach emphasizes the importance of continuous, real-time perception and its tight integration with reactive motion generation methods. We present a fully integrated system where real-time object and robot tracking as well as ambient world modeling provides the necessary input to feedback controllers and continuous motion optimizers. Specifically, they provide attractive and repulsive potentials based on which the controllers and motion optimizer can online compute movement policies at different time intervals. We extensively evaluate the proposed system on a real robotic platform in four scenarios that exhibit either challenging workspace geometry or a dynamic environment. We compare the proposed integrated system with a more traditional sense-plan-act approach that is still widely used. In 333 experiments, we show the robustness and accuracy of the proposed system.

am

arxiv video Project Page [BibTex]


Thumb md learning ct block diagram v2
Learning Feedback Terms for Reactive Planning and Control

Rai, A., Sutanto, G., Schaal, S., Meier, F.

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2017 (conference)

am

pdf video [BibTex]

pdf video [BibTex]


Thumb md cover
Path Integral Guided Policy Search

Chebotar, Y., Kalakrishnan, M., Yahya, A., Li, A., Schaal, S., Levine, S.

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), April 2017 (conference)

am

pdf video [BibTex]

pdf video [BibTex]


Thumb md mf es
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A., Krause, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE International Conference on Robotics and Automation, May 2017 (inproceedings) Accepted

am pn

PDF arXiv [BibTex]

PDF arXiv [BibTex]


Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers

Doerr, A., Nguyen-Tuong, D., Marco, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2017 IEEE International Conference on Robotics and Automation, May 2017 (inproceedings) Accepted

am

PDF arXiv [BibTex]

PDF arXiv [BibTex]


Event-based State Estimation: An Emulation-based Approach

Trimpe, S.

IET Control Theory & Applications, 2017 (article) Accepted

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor agents observe a dynamic process and sporadically transmit their measurements to estimator agents over a shared bus network. Local event-triggering protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. The event-based design is shown to emulate the performance of a centralised state observer design up to guaranteed bounds, but with reduced communication. The stability results for state estimation are extended to the distributed control system that results when the local estimates are used for feedback control. Results from numerical simulations and hardware experiments illustrate the effectiveness of the proposed approach in reducing network communication.

am

arXiv Supplementary material PDF DOI [BibTex]


Thumb md fig  quali  arm
Probabilistic Articulated Real-Time Tracking for Robot Manipulation

(Finalist of Best Robotic Vision Paper Award of ICRA 2017)

Garcia Cifuentes, C., Issac, J., Wüthrich, M., Schaal, S., Bohg, J.

IEEE Robotics and Automation Letters (RA-L), 2(2):577-584, April 2017 (article)

Abstract
We propose a probabilistic filtering method which fuses joint measurements with depth images to yield a precise, real-time estimate of the end-effector pose in the camera frame. This avoids the need for frame transformations when using it in combination with visual object tracking methods. Precision is achieved by modeling and correcting biases in the joint measurements as well as inaccuracies in the robot model, such as poor extrinsic camera calibration. We make our method computationally efficient through a principled combination of Kalman filtering of the joint measurements and asynchronous depth-image updates based on the Coordinate Particle Filter. We quantitatively evaluate our approach on a dataset recorded from a real robotic platform, annotated with ground truth from a motion capture system. We show that our approach is robust and accurate even under challenging conditions such as fast motion, significant and long-term occlusions, and time-varying biases. We release the dataset along with open-source code of our approach to allow for quantitative comparison with alternative approaches.

am

arXiv video code and dataset video PDF DOI Project Page [BibTex]


Thumb md robot legos
Interactive Perception: Leveraging Action in Perception and Perception in Action

Bohg, J., Hausman, K., Sankaran, B., Brock, O., Kragic, D., Schaal, S., Sukhatme, G.

IEEE Transactions on Robotics, June 2017 (article) Accepted

Abstract
Recent approaches in robotics follow the insight that perception is facilitated by interactivity with the environment. These approaches are subsumed under the term of Interactive Perception (IP). We argue that IP provides the following benefits: (i) any type of forceful interaction with the environment creates a new type of informative sensory signal that would otherwise not be present and (ii) any prior knowledge about the nature of the interaction supports the interpretation of the signal. This is facilitated by knowledge of the regularity in the combined space of sensory information and action parameters. The goal of this survey is to postulate this as a principle and collect evidence in support by analyzing and categorizing existing work in this area. We also provide an overview of the most important applications of Interactive Perception. We close this survey by discussing the remaining open questions. Thereby, we hope to define a field and inspire future work.

am

Version on arXiv Project Page [BibTex]

Version on arXiv Project Page [BibTex]


Anticipatory Action Selection for Human-Robot Table Tennis

Wang, Z., Boularias, A., Mülling, K., Schölkopf, B., Peters, J.

Artificial Intelligence, 247, pages: 399-414, 2017, Special Issue on AI and Robotics (article)

Abstract
Abstract Anticipation can enhance the capability of a robot in its interaction with humans, where the robot predicts the humans' intention for selecting its own action. We present a novel framework of anticipatory action selection for human-robot interaction, which is capable to handle nonlinear and stochastic human behaviors such as table tennis strokes and allows the robot to choose the optimal action based on prediction of the human partner's intention with uncertainty. The presented framework is generic and can be used in many human-robot interaction scenarios, for example, in navigation and human-robot co-manipulation. In this article, we conduct a case study on human-robot table tennis. Due to the limited amount of time for executing hitting movements, a robot usually needs to initiate its hitting movement before the opponent hits the ball, which requires the robot to be anticipatory based on visual observation of the opponent's movement. Previous work on Intention-Driven Dynamics Models (IDDM) allowed the robot to predict the intended target of the opponent. In this article, we address the problem of action selection and optimal timing for initiating a chosen action by formulating the anticipatory action selection as a Partially Observable Markov Decision Process (POMDP), where the transition and observation are modeled by the \{IDDM\} framework. We present two approaches to anticipatory action selection based on the \{POMDP\} formulation, i.e., a model-free policy learning method based on Least-Squares Policy Iteration (LSPI) that employs the \{IDDM\} for belief updates, and a model-based Monte-Carlo Planning (MCP) method, which benefits from the transition and observation model by the IDDM. Experimental results using real data in a simulated environment show the importance of anticipatory action selection, and that \{POMDPs\} are suitable to formulate the anticipatory action selection problem by taking into account the uncertainties in prediction. We also show that existing algorithms for POMDPs, such as \{LSPI\} and MCP, can be applied to substantially improve the robot's performance in its interaction with humans.

am ei

DOI [BibTex]

DOI [BibTex]

2016


Thumb md iser small
Generalizing Regrasping with Supervised Policy Learning

Chebotar, Y., Hausman, K., Kroemer, O., Sukhatme, G., Schaal, S.

In International Symposium on Experimental Robotics (ISER) 2016, International Symposium on Experimental Robotics, 2016 (inproceedings)

am

pdf video [BibTex]

2016


pdf video [BibTex]


Thumb md front small
Self-Supervised Regrasping using Spatio-Temporal Tactile Features and Reinforcement Learning

Chebotar, Y., Hausman, K., Su, Z., Sukhatme, G., Schaal, S.

In International Conference on Intelligent Robots and Systems (IROS) 2016, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016 (inproceedings)

am

pdf video [BibTex]

pdf video [BibTex]


Thumb md nonlinear approximate vs exact
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Garcia Cifuentes, C., Kappler, D., Schaal, S.

The International Journal of Robotics Research, 35(14):1731-1749, December 2016 (article)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. The GF represents the belief of the current state by a Gaussian distribution, whose mean is an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependences in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end, we view the GF as the solution to a constrained optimization problem. From this new perspective, the GF is seen as a special case of a much broader class of filters, obtained by relaxing the constraint on the form of the approximate posterior. On this basis, we outline some conditions which potential generalizations have to satisfy in order to maintain the computational efficiency of the GF. We propose one concrete generalization which corresponds to the standard GF using a pseudo measurement instead of the actual measurement. Extending an existing GF implementation in this manner is trivial. Nevertheless, we show that this small change can have a major impact on the estimation accuracy.

am

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Predictive and Self Triggering for Event-based State Estimation

Trimpe, S.

In Proceedings of the 55th IEEE Conference on Decision and Control, pages: 3098-3105, Las Vegas, NV, USA, December 2016 (inproceedings)

am

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Event-based Sampling for Reducing Communication Load in Realtime Human Motion Analysis by Wireless Inertial Sensor Networks

Laidig, D., Trimpe, S., Seel, T.

In Current Directions in Biomedical Engineering, 2(1), 2016 (inproceedings)

am

PDF DOI [BibTex]

PDF DOI [BibTex]


Locally Weighted Regression for Control

Ting, J., Meier, F., Vijayakumar, S., Schaal, S.

In Encyclopedia of Machine Learning and Data Mining, pages: 1-14, Springer US, Boston, MA, 2016 (inbook)

am

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb md nao
Ensuring Ethical Behavior from Autonomous Systems

Anderson, M., Anderson, S., Berenz, V.

In Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February 12, 2016, 2016 (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


Jointly Learning Trajectory Generation and Hitting Point Prediction in Robot Table Tennis

Huang, Y., Büchler, D., Koc, O., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots, pages: 650-655, Humanoids, 2016 (conference)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Using Probabilistic Movement Primitives for Striking Movements

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots, pages: 502-508, Humanoids, 2016 (conference)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb md thumb
Barrista - Caffe Well-Served

Lassner, C., Kappler, D., Kiefel, M., Gehler, P.

ACM Multimedia Open Source Software Competition, ACM OSSC16, October 2016 (proceedings) Accepted

Abstract
The caffe framework is one of the leading deep learning toolboxes in the machine learning and computer vision community. While it offers efficiency and configurability, it falls short of a full interface to Python. With increasingly involved procedures for training deep networks and reaching depths of hundreds of layers, creating configuration files and keeping them consistent becomes an error prone process. We introduce the barrista framework, offering full, pythonic control over caffe. It separates responsibilities and offers code to solve frequently occurring tasks for pre-processing, training and model inspection. It is compatible to all caffe versions since mid 2015 and can import and export .prototxt files. Examples are included, e.g., a deep residual network implemented in only 172 lines (for arbitrary depths), comparing to 2320 lines in the official implementation for the equivalent model.

am ps

pdf link (url) DOI [BibTex]

pdf link (url) DOI [BibTex]


A New Trajectory Generation Framework in Robotic Table Tennis

Koc, O., Maeda, G., Peters, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 3750-3756, IROS, 2016 (conference)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb md oxfordlight
Parameter Learning for Improving Binary Descriptor Matching

Sankaran, B., Ramalingam, S., Taguchi, Y.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IEEE, IROS, October 2016 (conference) Accepted

Abstract
Binary descriptors allow fast detection and matching algorithms in computer vision problems. Though binary descriptors can be computed at almost two orders of magnitude faster than traditional gradient based descriptors, they suffer from poor matching accuracy in challenging conditions. In this paper we propose three improvements for binary descriptors in their computation and matching that enhance their performance in comparison to traditional binary and non-binary descriptors without compromising their speed. This is achieved by learning some weights and threshold parameters that allow customized matching under some variations such as lighting and viewpoint. Our suggested improvements can be easily applied to any binary descriptor. We demonstrate our approach on the ORB (Oriented FAST and Rotated BRIEF) descriptor and compare its performance with the traditional ORB and SIFT descriptors on a wide variety of datasets. In all instances, our enhancements outperform standard ORB and is comparable to SIFT.

am

[BibTex]

[BibTex]


Probabilistic Inference for Determining Options in Reinforcement Learning

Daniel, C., van Hoof, H., Peters, J., Neumann, G.

Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECMLPKDD 2016 (article)

am ei

DOI [BibTex]

DOI [BibTex]


DOOMED: Direct Online Optimization of Modeling Errors in Dynamics

Ratliff, N., Meier, F., Kappler, D., Schaal, S.

arXiv preprint arXiv:1608.00309, August 2016 (article)

am

[BibTex]


Towards Robust Online Inverse Dynamics Learning

Meier, F., Kappler, D., Ratliff, N., Schaal, S.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IEEE, IROS, 2016 (conference) Accepted

am

fmeier_iros_2016 [BibTex]

fmeier_iros_2016 [BibTex]


Thumb md img
Learning Where to Search Using Visual Attention

Kloss, A., Kappler, D., Lensch, H., Butz, M., Schaal, S., Bohg, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IEEE, IROS, October 2016 (conference)

Abstract
One of the central tasks for a household robot is searching for specific objects. It does not only require localizing the target object but also identifying promising search locations in the scene if the target is not immediately visible. As computation time and hardware resources are usually limited in robotics, it is desirable to avoid expensive visual processing steps that are exhaustively applied over the entire image. The human visual system can quickly select those image locations that have to be processed in detail for a given task. This allows us to cope with huge amounts of information and to efficiently deploy the limited capacities of our visual system. In this paper, we therefore propose to use human fixation data to train a top-down saliency model that predicts relevant image locations when searching for specific objects. We show that the learned model can successfully prune bounding box proposals without rejecting the ground truth object locations. In this aspect, the proposed model outperforms a model that is trained only on the ground truth segmentations of the target object instead of fixation data.

am

Project Page [BibTex]

PDF Project Page [BibTex]


Thumb md gadde
Superpixel Convolutional Networks using Bilateral Inceptions

Gadde, R., Jampani, V., Kiefel, M., Kappler, D., Gehler, P.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, Springer, 14th European Conference on Computer Vision, October 2016 (inproceedings)

Abstract
In this paper we propose a CNN architecture for semantic image segmentation. We introduce a new “bilateral inception” module that can be inserted in existing CNN architectures and performs bilateral filtering, at multiple feature-scales, between superpixels in an image. The feature spaces for bilateral filtering and other parameters of the module are learned end-to-end using standard backpropagation techniques. The bilateral inception module addresses two issues that arise with general CNN segmentation architectures. First, this module propagates information between (super) pixels while respecting image edges, thus using the structured information of the problem for improved results. Second, the layer recovers a full resolution segmentation result from the lower resolution solution of a CNN. In the experiments, we modify several existing CNN architectures by inserting our inception modules between the last CNN (1 × 1 convolution) layers. Empirical results on three different datasets show reliable improvements not only in comparison to the baseline networks, but also in comparison to several dense-pixel prediction techniques such as CRFs, while being competitive in time.

am ps

pdf supplementary poster [BibTex]

pdf supplementary poster [BibTex]


Communication Rate Analysis for Event-based State Estimation

(Best student paper finalist)

Ebner, S., Trimpe, S.

In Proceedings of the 13th International Workshop on Discrete Event Systems, May 2016 (inproceedings)

am

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb md screen shot 2016 06 27 at 09.38.59
Implications of Action-Oriented Paradigm Shifts in Cognitive Science

Dominey, P., Prescott, T., Bohg, J., Engel, A., Gallagher, S., Heed, T., Hoffmann, M., Knoblich, G., Prinz, W., Schwartz, A.

In The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science, 18, pages: 333-356, 20, Strüngmann Forum Reports, vol. 18, J. Lupp, series editor, (Editors: Andreas K. Engel and Karl J. Friston and Danica Kragic), The MIT Press, 18th Ernst Strüngmann Forum, May 2016 (incollection) In press

Abstract
An action-oriented perspective changes the role of an individual from a passive observer to an actively engaged agent interacting in a closed loop with the world as well as with others. Cognition exists to serve action within a landscape that contains both. This chapter surveys this landscape and addresses the status of the pragmatic turn. Its potential influence on science and the study of cognition are considered (including perception, social cognition, social interaction, sensorimotor entrainment, and language acquisition) and its impact on how neuroscience is studied is also investigated (with the notion that brains do not passively build models, but instead support the guidance of action). A review of its implications in robotics and engineering includes a discussion of the application of enactive control principles to couple action and perception in robotics as well as the conceptualization of system design in a more holistic, less modular manner. Practical applications that can impact the human condition are reviewed (e.g. educational applications, treatment possibilities for developmental and psychopathological disorders, the development of neural prostheses). All of this foreshadows the potential societal implications of the pragmatic turn. The chapter concludes that an action-oriented approach emphasizes a continuum of interaction between technical aspects of cognitive systems and robotics, biology, psychology, the social sciences, and the humanities, where the individual is part of a grounded cultural system.

am

The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science 18th Ernst Strüngmann Forum Bibliography Chapter link (url) [BibTex]

The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science 18th Ernst Strüngmann Forum Bibliography Chapter link (url) [BibTex]


Thumb md looplearning
Learning Action-Perception Cycles in Robotics: A Question of Representations and Embodiment

Bohg, J., Kragic, D.

In The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science, 18, pages: 309-320, 18, Strüngmann Forum Reports, vol. 18, J. Lupp, series editor, (Editors: Andreas K. Engel and Karl J. Friston and Danica Kragic), The MIT Press, 18th Ernst Strüngmann Forum, May 2016 (incollection) In press

Abstract
Since the 1950s, robotics research has sought to build a general-purpose agent capable of autonomous, open-ended interaction with realistic, unconstrained environments. Cognition is perceived to be at the core of this process, yet understanding has been challenged because cognition is referred to differently within and across research areas, and is not clearly defined. The classic robotics approach is decomposition into functional modules which perform planning, reasoning, and problem-solving or provide input to these mechanisms. Although advancements have been made and numerous success stories reported in specific niches, this systems-engineering approach has not succeeded in building such a cognitive agent. The emergence of an action-oriented paradigm offers a new approach: action and perception are no longer separable into functional modules but must be considered in a complete loop. This chapter reviews work on different mechanisms for action- perception learning and discusses the role of embodiment in the design of the underlying representations and learning. It discusses the evaluation of agents and suggests the development of a new embodied Turing Test. Appropriate scenarios need to be devised in addition to current competitions, so that abilities can be tested over long time periods.

am

18th Ernst Strüngmann Forum The Pragmatic Turn- Toward Action-Oriented Views in Cognitive Science Bibliography Chapter link (url) [BibTex]

18th Ernst Strüngmann Forum The Pragmatic Turn- Toward Action-Oriented Views in Cognitive Science Bibliography Chapter link (url) [BibTex]


Distinct adaptation to abrupt and gradual torque perturbations with a multi-joint exoskeleton robot

Oh, Y., Sutanto, G., Mistry, M., Schweighofer, N., Schaal, S.

Abstracts of Neural Control of Movement Conference (NCM 2016), Montego Bay, Jamaica, April 2016 (poster)

am

[BibTex]

[BibTex]


Bioinspired Motor Control for Articulated Robots [From the Guest Editors]

Vitiello, Nicola., Ijspeert, Auke J., Schaal, S.

IEEE Robotics {\&} Automation Magazine, 23(1):20-21, 2016 (article)

am

[BibTex]

[BibTex]


Supplemental material for ’Communication Rate Analysis for Event-based State Estimation’

Ebner, S., Trimpe, S.

Max Planck Institute for Intelligent Systems, January 2016 (techreport)

am

PDF [BibTex]

PDF [BibTex]


Drifting Gaussian Processes with Varying Neighborhood Sizes for Online Model Learning

Meier, F., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

am

[BibTex]

[BibTex]


Thumb md 2pamcompressed
A Lightweight Robotic Arm with Pneumatic Muscles for Robot Learning

Büchler, D., Ott, H., Peters, J.

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, pages: 4086-4092, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (conference)

am ei

ICRA16final DOI [BibTex]

ICRA16final DOI [BibTex]


Thumb md pic for website small
Robot Arm Pose Estimation by Pixel-wise Regression of Joint Angles

Widmaier, F., Kappler, D., Schaal, S., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
To achieve accurate vision-based control with a robotic arm, a good hand-eye coordination is required. However, knowing the current configuration of the arm can be very difficult due to noisy readings from joint encoders or an inaccurate hand-eye calibration. We propose an approach for robot arm pose estimation that uses depth images of the arm as input to directly estimate angular joint positions. This is a frame-by-frame method which does not rely on good initialisation of the solution from the previous frames or knowledge from the joint encoders. For estimation, we employ a random regression forest which is trained on synthetically generated data. We compare different training objectives of the forest and also analyse the influence of prior segmentation of the arms on accuracy. We show that this approach improves previous work both in terms of computational complexity and accuracy. Despite being trained on synthetic data only, we demonstrate that the estimation also works on real depth images.

am

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb md ranking top 1
Optimizing for what matters: the Top Grasp Hypothesis

Kappler, D., Schaal, S., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
In this paper, we consider the problem of robotic grasping of objects when only partial and noisy sensor data of the environment is available. We are specifically interested in the problem of reliably selecting the best hypothesis from a whole set. This is commonly the case when trying to grasp an object for which we can only observe a partial point cloud from one viewpoint through noisy sensors. There will be many possible ways to successfully grasp this object, and even more which will fail. We propose a supervised learning method that is trained with a ranking loss. This explicitly encourages that the top-ranked training grasp in a hypothesis set is also positively labeled. We show how we adapt the standard ranking loss to work with data that has binary labels and explain the benefits of this formulation. Additionally, we show how we can efficiently optimize this loss with stochastic gradient descent. In quantitative experiments, we show that we can outperform previous models by a large margin.

am

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb md retrieved templates 3
Exemplar-based Prediction of Object Properties from Local Shape Similarity

Bohg, J., Kappler, D., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
We propose a novel method that enables a robot to identify a graspable object part of an unknown object given only noisy and partial information that is obtained from an RGB-D camera. Our method combines the benefits of local with the advantages of global methods. It learns a classifier that takes a local shape representation as input and outputs the probability that a grasp applied at this location will be successful. Given a query data point that is classified in this way, we can retrieve all the locally similar training data points and use them to predict latent global object shape. This information may help to further prune positively labeled grasp hypotheses based on, e.g. relation to the predicted average global shape or suitability for a specific task. This prediction can also guide scene exploration to prune object shape hypotheses. To learn the function that maps local shape to grasp stability we use a Random Forest Classifier. We show that our method reaches the same classification performance as the current state-of-the-art on this dataset which uses a Convolutional Neural Network. Additionally, we exploit the natural ability of the Random Forest to cluster similar data. For a positively predicted query data point, we retrieve all the locally similar training data points that are associated with the same leaf nodes of the Random Forest. The main insight from this work is that local object shape that affords a grasp is also a good predictor of global object shape. We empirically support this claim with quantitative experiments. Additionally, we demonstrate the predictive capability of the method on some real data examples.

am

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb md screen shot 2016 01 19 at 14.48.37
Automatic LQR Tuning Based on Gaussian Process Global Optimization

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree- of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Results of a two- and four- dimensional tuning problems highlight the method’s potential for automatic controller tuning on robotic platforms.

am pn

Video PDF DOI Project Page [BibTex]

Video PDF DOI Project Page [BibTex]


Thumb md screen shot 2016 01 19 at 14.56.20
Depth-based Object Tracking Using a Robust Gaussian Filter

Issac, J., Wüthrich, M., Garcia Cifuentes, C., Bohg, J., Trimpe, S., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
We consider the problem of model-based 3D- tracking of objects given dense depth images as input. Two difficulties preclude the application of a standard Gaussian filter to this problem. First of all, depth sensors are characterized by fat-tailed measurement noise. To address this issue, we show how a recently published robustification method for Gaussian filters can be applied to the problem at hand. Thereby, we avoid using heuristic outlier detection methods that simply reject measurements if they do not match the model. Secondly, the computational cost of the standard Gaussian filter is prohibitive due to the high-dimensional measurement, i.e. the depth image. To address this problem, we propose an approximation to reduce the computational complexity of the filter. In quantitative experiments on real data we show how our method clearly outperforms the standard Gaussian filter. Furthermore, we compare its performance to a particle-filter-based tracking method, and observe comparable computational efficiency and improved accuracy and smoothness of the estimates.

am

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page Project Page [BibTex]

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page Project Page [BibTex]


Thumb md screen shot 2015 12 04 at 15.11.43
Robust Gaussian Filtering using a Pseudo Measurement

Wüthrich, M., Garcia Cifuentes, C., Trimpe, S., Meier, F., Bohg, J., Issac, J., Schaal, S.

In Proceedings of the American Control Conference, Boston, MA, USA, July 2016 (inproceedings)

Abstract
Most widely-used state estimation algorithms, such as the Extended Kalman Filter and the Unscented Kalman Filter, belong to the family of Gaussian Filters (GF). Unfortunately, GFs fail if the measurement process is modelled by a fat-tailed distribution. This is a severe limitation, because thin-tailed measurement models, such as the analytically-convenient and therefore widely-used Gaussian distribution, are sensitive to outliers. In this paper, we show that mapping the measurements into a specific feature space enables any existing GF algorithm to work with fat-tailed measurement models. We find a feature function which is optimal under certain conditions. Simulation results show that the proposed method allows for robust filtering in both linear and nonlinear systems with measurements contaminated by fat-tailed noise.

am

Web link (url) DOI Project Page Project Page [BibTex]

Web link (url) DOI Project Page Project Page [BibTex]

2015


Distributed Event-based State Estimation

Trimpe, S.

Max Planck Institute for Intelligent Systems, November 2015 (techreport)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor-actuator-agents observe a dynamic process and sporadically exchange their measurements and inputs over a bus network. Based on these data, each agent estimates the full state of the dynamic system, which may exhibit arbitrary inter-agent couplings. Local event-based protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. This event-based scheme is shown to mimic a centralized Luenberger observer design up to guaranteed bounds, and stability is proven in the sense of bounded estimation errors for bounded disturbances. The stability result extends to the distributed control system that results when the local state estimates are used for distributed feedback control. Simulation results highlight the benefit of the event-based approach over classical periodic ones in reducing communication requirements.

am

arXiv [BibTex]

2015


arXiv [BibTex]


Thumb md tacit
Tacit Learning for Emergence of Task-Related Behaviour through Signal Accumulation

Berenz, V., Alnajjar, F., Hayashibe, M., Shimoda, S.

In Emergent Trends in Robotics and Intelligent Systems: Where is the Role of Intelligent Technologies in the Next Generation of Robots?, pages: 31-38, Springer International Publishing, Cham, 2015 (inbook)

am

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb md cns
Sensory synergy as environmental input integration

Alnajjar, F., Itkonen, M., Berenz, V., Tournier, M., Nagai, C., Shimoda, S.

Frontiers in Neuroscience, 8, pages: 436, 2015 (article)

Abstract
The development of a method to feed proper environmental inputs back to the central nervous system (CNS) remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with 9 healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis’ sensory system to make the controller simpler

am

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Whole-body motor strategies for balancing on a beam when changing the number of available degrees of freedom

Chiovetto, E., Huber, M., Righetti, L. Schaal, S. Sternad, D., Giese, M.

In Progress in Motor Control X, Budapest, Hungry, 2015 (inproceedings)

am

[BibTex]

[BibTex]


From Humans to Robots and Back: Role of Arm Movement in Medio-lateral Balance Control

Huber, M., Chiovetto, E., Schaal, S. Giese, M. Sternad, D.

In Annual Meeting of Neural Control of Movement, Charleston, NC, 2015 (inproceedings)

am

[BibTex]

[BibTex]