Header logo is

A Representation of Complex Movement Sequences Based on Hierarchical Spatio-Temporal Correspondence for Imitation Learning in Robotics

2003

Poster

ei


Imitation learning of complex movements has become a popular topic in neuroscience, as well as in robotics. A number of conceptual as well as practical problems are still unsolved. One example is the determination of the aspects of movements which are relevant for imitation. Problems concerning the movement representation are twofold: (1) The movement characteristics of observed movements have to be transferred from the perceptual level to the level of generated actions. (2) Continuous spaces of movements with variable styles have to be approximated based on a limited number of learned example sequences. Therefore, one has to use representation with a high generalisation capability. We present methods for the representation of complex movement sequences that addresses these questions in the context of the imitation learning of writing movements using a robot arm with human-like geometry. For the transfer of complex movements from perception to action we exploit a learning-based method that represents complex action sequences by linear combination of prototypical examples (Ilg and Giese, BMCV 2002). The method of hierarchical spatio-temporal morphable models (HSTMM) decomposes action sequences automatically into movement primitives. These primitives are modeled by linear combinations of a small number of learned example trajectories. The learned spatio-temporal models are suitable for the analysis and synthesis of long action sequences, which consist of movement primitives with varying style parameters. The proposed method is illustrated by imitation learning of complex writing movements. Human trajectories were recorded using a commercial motion capture system (VICON). In the rst step the recorded writing sequences are decomposed into movement primitives. These movement primitives can be analyzed and changed in style by de ning linear combinations of prototypes with di erent linear weight combinations. Our system can imitate writing movements of di erent actors, synthesize new writing styles and can even exaggerate the writing movements of individual actors. Words and writing movements of the robot look very natural, and closely match the natural styles. These preliminary results makes the proposed method promising for further applications in learning-based robotics. In this poster we focus on the acquisition of the movement representation (identi cation and segmentation of movement primitives, generation of new writing styles by spatio-temporal morphing). The transfer of the generated writing movements to the robot considering the given kinematic and dynamic constraints is discussed in Bakir et al (this volume).

Author(s): Ilg, W. and Bakir, GH. and Franz, MO. and Giese, M.
Volume: 6
Pages: 74
Year: 2003
Month: February
Day: 0
Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann

Department(s): Empirical Inference
Bibtex Type: Poster (poster)

Digital: 0
Event Name: 6. T{\"u}binger Wahrnehmungskonferenz (TWK 2003)
Event Place: T{\"u}bingen, Germany
Organization: Max-Planck-Gesellschaft
School: Biologische Kybernetik

Links: PDF
Web

BibTex

@poster{2076,
  title = {A Representation of Complex Movement Sequences Based on Hierarchical Spatio-Temporal Correspondence for Imitation Learning in Robotics},
  author = {Ilg, W. and Bakir, GH. and Franz, MO. and Giese, M.},
  volume = {6},
  pages = {74},
  editors = {H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann},
  organization = {Max-Planck-Gesellschaft},
  school = {Biologische Kybernetik},
  month = feb,
  year = {2003},
  month_numeric = {2}
}