Header logo is de
Vorträge

Robust Discrimination and Generation of Faces using Compact, Disentangled Embeddings

Talk
  • 22 August 2019 • 15:00 16:00
  • Björn Browatzki
  • PS Aquarium

Current solutions to discriminative and generative tasks in computer vision exist separately and often lack interpretability and explainability. Using faces as our application domain, here we present an architecture that is based around two core ideas that address these issues: first, our framework learns an unsupervised, low-dimensional embedding of faces using an adversarial autoencoder that is able to synthesize high-quality face images. Second, a supervised disentanglement splits the low-dimensional embedding vector into four sub-vectors, each of which contains separated information about one of four major face attributes (pose, identity, expression, and style) that can be used both for discriminative tasks and for manipulating all four attributes in an explicit manner. The resulting architecture achieves state-of-the-art image quality, good discrimination and face retrieval results on each of the four attributes, and supports various face editing tasks using a face representation of only 99 dimensions. Finally, we apply the architecture's robust image synthesis capabilities to visually debug label-quality issues in an existing face dataset.

Organizers: Timo Bolkart

  • Jérôme Casas
  • 2P04

Insect chemical ecology is a mature, long standing field, with its own journal. By contrast, insect physical ecology is much less studied and the worked scattered. Using work done in my group, I will highlight locomotion, both in granular materials like sand and at the water surface as well as sensing, in particular olfaction and flow sensing. The bio-inspired implementations in MEMS technologies will be the closing chapter.

Organizers: Metin Sitti


Probabilistic symmetry and invariant neural networks

IS Colloquium
  • 25 March 2019 • 15:30 16:30
  • Benjamin Bloem-Reddy
  • N4.022

In an effort to improve the performance of deep neural networks in data-scarce, non-i.i.d., or unsupervised settings, much recent research has been devoted to encoding invariance under symmetry transformations into neural network architectures. We treat the neural network input and output as random variables, and consider group invariance from the perspective of probabilistic symmetry. Drawing on tools from probability and statistics, we establish a link between functional and probabilistic symmetry, and obtain functional representations of probability distributions that are invariant or equivariant under the action of a compact group. Those representations characterize the structure of neural networks that can be used to represent such distributions and yield a general program for constructing invariant stochastic or deterministic neural networks. We develop the details of the general program for exchangeable sequences and arrays, recovering a number of recent examples as special cases. This is work in collaboration with Yee Whye Teh. https://arxiv.org/abs/1901.06082

Organizers: Isabel Valera


Modularity and transfer in reinforcement learning

Talk
  • 25 March 2019 • 14:00 15:15
  • Herke van Hoof
  • N2 meeting room (N2.025)

Learning new control strategies for (possibly unknown) dynamical systems is a challenging task. Reinforcement learning algorithms typically require 'fresh' data regularly, but obtaining data safely and in sufficient quantities is a challenge on real systems. Thus, it is no surprise that most recent successes have been in domains where massive amounts of data can easily be generated in simulation (e.g., games such as Atari and Go).

Organizers: Georg Martius Mara Cascianelli


  • Sangram Bagh
  • 2P04

The molecular connectivity between genes and proteins inside a cell shows a good degree of resemblance with complex electrical circuits. This inspires the possibility of engineering a cell similar to an engineering device by plugging in genetic logic circuits. This approach, which is loosely defined as synthetic biology is an emerging field of bioengineering, where scientist use electrical and computer engineering principle to re-program cellular functions with a potential to solve next generation challenges in medicine, materials, energy, and space travel. In this talk, we discuss our efforts to create artificial and complex chemical signal processing systems using genetic logic circuits and its applications in building a technology platform for microbial robotics. We further discuss our systems biology effort to understand the effect of microgravity on human and bacterial cells during space travel.

Organizers: Metin Sitti


  • Dr.-Ing. Thomas Seel
  • MPI-IS Stuttgart, seminar room 2P4

Neurological disorders and injuries lead to a loss of sensorimotor function in the central nervous system, which controls the musculoskeletal system. Novel systems and control methods can be employed to create neuroprostheses that restore these functions to an unprecedented degree by two major advances: (1) Long standing limitations of inertial motion tracking are overcome by novel parameter estimation and sensor fusion methods. (2) A recent extension of classic learning control methods facilitates real-time pattern adaptation in artificial muscle recruitment. We review the role of these methods in the development of biomimetic neuroprostheses and discuss their potential impact in a range of further application systems including autonomous vehicles, robotics, and multi-agent networks.

Organizers: Sebastian Trimpe


  • Nikos Athanasiou
  • PS Aquarium

First, a short analysis of the key components of my participation in SemEval 2018, an emotion analysis contest from tweets. Namely, a transfer learning approach used for emotion classification and a context-aware attention mechanism. In my second paper, I explore how brain information can improve word representations. Neural activation models that have been proposed in the literature use a set of example words for which fMRI measurements are available in order to find a mapping between word semantics and localized neural activations. I use such models to predict neural activations on a full word lexicon. Then, I propose a cognitive computational model that estimates semantic similarity in the neural activation space and investigates the relative performance of this model for various natural language processing tasks. Finally, in my most recent work I explore cross-topic word representations. In traditional Distributional Semantic Models -like word2vec- the multiple senses of a polysemous word are conflated into a single vector space representation. In my work, I propose a DSM that learns multiple distributional representations of a word based on different topics. Moreover, we project the different topic representations in a common space and apply a smoothing technique to group redundant topic vectors.

Organizers: Soubhik Sanyal


  • Zhaoping Li
  • MPI-IS lecture hall (N0.002)

Since Hubel and Wiesel's seminal findings in the primary visual cortex (V1) more than 50 years ago, progress in vision science has been very limited along previous frameworks and schools of thoughts on understanding vision. Have we been asking the right questions? I will show observations motivating the new path. First, a drastic information bottleneck forces the brain to process only a tiny fraction of the massive visual input information; this selection is called the attentional selection, how to select this tiny fraction is critical. Second, a large body of evidence has been accumulating to suggest that the primary visual cortex (V1) is where this selection starts, suggesting that the visual cortical areas along the visual pathway beyond V1 must be investigated in light of this selection in V1. Placing attentional selection as the center stage, a new path to understanding vision is proposed (articulated in my book "Understanding vision: theory, models, and data", Oxford University Press 2014). I will show a first example of using this new path, which aims to ask new questions and make fresh progresses. I will relate our insights to artificial vision systems to discuss issues like top-down feedbacks in hierachical processing, analysis-by-synthesis, and image understanding.

Organizers: Timo Bolkart Aamir Ahmad


Design of functional polymers for biomedical applications

Talk
  • 27 February 2019 • 14:00 15:00
  • Dr. Salvador Borrós Gómez
  • Stuttgart 2P4

Functional polymers can be easily tailored for their interaction with living organismes. In our Group, we have worked during the last 15 years in the development of this kind of polymeric materials with different funcionalities, high biocompatibility and in different forms. In this talk, we will describe the synthesis of thermosensitive thin films that can be used to prevent biofilm formation in medical devices, the preparation of biodegradable polymers specially designed for vectors for gene transfection and a new familliy of zwitterionic polymers that are able to cross intestine mucouse for oral delivery applications. The relationship between structure-functionality- applications will be discussed for every example.

Organizers: Metin Sitti


  • Hojin Lee
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

Haptic technologies in both kinesthetic and tactile aspects benefit a brand-new opportunity to recent human-machine interactive applications. In this talk, I, who believe in that one of the essential role of a researcher is pioneering new insights and knowledge, will present my previous research topics about haptic technologies and human-machine interactive applications in two branches: laser-based mid-air haptics and sensorimotor skill learning. For the former branch, I will introduce our approach named indirect laser radiation and its application. Indirect laser radiation utilizes a laser and a light-absorbing elastic medium to evoke a tapping-like tactile sensation. For the latter, I will introduce our data-driven approach for both modeling and learning of sensorimotor skills (especially, driving) with kinesthetic assistance and artificial neural networks; I call it human-like haptic assistance. To unify two different branches of my earlier studies for exploring the feasibility of the sensory channel named "touch", I will present a general research paradigm for human-machine interactive applications to which current haptic technologies can aim in future.

Organizers: Katherine J. Kuchenbecker


  • Ravali Gourishetti
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

Needle insertion is the most essential skill in medical care; training has to be imparted not only for physicians but also for nurses and paramedics. In most needle insertion procedures, haptic feedback from the needle is the main stimulus that novices are to be trained in. For better patient safety, the classical methods of training the haptic skills have to be replaced with simulators based on new robotic and graphics technologies. The main objective of this work is to develop analytical models of needle insertion (a special case of epidural anesthesia) including the biomechanical and psychophysical concepts that simulate the needle-tissue interaction forces in linear heterogeneous tissues and to validate the model with a series of experiments. The biomechanical and perception models were validated with experiments in two stages: with and without the human intervention. The second stage is the validation using the Turing test with two different experiments: 1) to observe the perceptual difference between the simulated and the physical phantom model, and 2) to verify the effectiveness of perceptual filter between the unfiltered and filtered model response. The results showed that the model could replicate the physical phantom tissues with good accuracy. This can be further extended to a non-linear heterogeneous model. The proposed needle/tissue interaction force models can be used more often in improving realism, performance and enabling future applications in needle simulators in heterogeneous tissue. Needle insertion training simulator was developed with the simulated models using Omni Phantom and clinical trials are conducted for the face validity and construct validity. The face validity results showed that the degree of realism of virtual environments and instruments had the overall lowest mean score and ease of usage and training in hand – eye coordination had the highest mean score. The construct validity results showed that the simulator was able to successfully differentiate force and psychomotor signatures of anesthesiologists with experiences less than 5 years and more than 5 years. For the performance index of the trainees, a novel measure, Just Controllable Difference (JCD) was proposed and a preliminary study on JCD measure is explored using two experiments for the novice. A preliminary study on the use of clinical training simulations, especially needle insertion procedure in virtual environments is emphasized on two objectives: Firstly, measures of force JND with the three fingers and secondly, comparison of these measures in Non-Immersive Virtual Reality (NIVR) to that of the Immersive Virtual Reality (IVR) using psychophysical study with the Force Matching task, Constant Stimuli method, and Isometric Force Probing stimuli. The results showed a better force JND in the IVR compared to that of the NIVR. Also, a simple state observer model was proposed to explain the improvement of force JND in the IVR. This study would quantitatively reinforce the use of the IVR for the design of various medical simulators.

Organizers: Katherine J. Kuchenbecker