Header logo is de


2019


no image
Foundations of Comparison-Based Hierarchical Clustering

Ghoshdastidar, D., Perrot, M., von Luxburg, U.

Advances in Neural Information Processing Systems 32 (NIPS 2019), NeurIPS, Neural Information Processing Systems 2019, December 2019 (conference)

slt

link (url) Project Page [BibTex]

2019


link (url) Project Page [BibTex]


no image
Assessing Aesthetics of Generated Abstract Images Using Correlation Structure

Khajehabdollahi, S., Martius, G., Levina, A.

In Proceedings 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pages: 306-313, IEEE, 2019 IEEE Symposium Series on Computational Intelligence (SSCI), December 2019 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


no image
Fisher Efficient Inference of Intractable Models

Liu, S., Kanamori, T., Jitkrittum, W., Chen, Y.

Advances in Neural Information Processing Systems 32, pages: 8790-8800, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., Neural Information Processing Systems 2019, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Semi-supervised learning, causality, and the conditional cluster assumption
Semi-supervised learning, causality, and the conditional cluster assumption

von Kügelgen, J., Mey, A., Loog, M., Schölkopf, B.

Advances in Neural Information Processing Systems 32, Curran Associates, Inc., Neural Information Processing Systems 2019 - Workshop Do the right thing: machine learning and causal inference for improved decision making, December 2019 (conference)

ei

Poster PDF link (url) [BibTex]

Poster PDF link (url) [BibTex]


Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks
Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks

von Kügelgen, J., Rubenstein, P. K., Schölkopf, B., Weller, A.

NeurIPS 2019 Workshop Do the right thing: machine learning and causal inference for improved decision making, NeurIPS, NeurIPS 2019 Workshop Do the right thing: machine learning and causal inference for improved decision making, December 2019 (conference)

ei

arXiv Poster link (url) [BibTex]

arXiv Poster link (url) [BibTex]


no image
Selecting causal brain features with a single conditional independence test per feature

Mastakouri, A., Schölkopf, B., Janzing, D.

Advances in Neural Information Processing Systems 32, pages: 12532-12543, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Practical and Consistent Estimation of f-Divergences

Rubenstein, P. K., Bousquet, O., Djolonga, J., Riquelme, C., Tolstikhin, I.

Advances in Neural Information Processing Systems 32, pages: 4072-4082, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Controlling Heterogeneous Stochastic Growth Processes on Lattices with Limited Resources
Controlling Heterogeneous Stochastic Growth Processes on Lattices with Limited Resources

Haksar, R., Solowjow, F., Trimpe, S., Schwager, M.

In Proceedings of the 58th IEEE International Conference on Decision and Control (CDC) , pages: 1315-1322, 58th IEEE International Conference on Decision and Control (CDC), December 2019 (conference)

ics

PDF [BibTex]

PDF [BibTex]


no image
Invert to Learn to Invert

Putzky, P., Welling, M.

Advances in Neural Information Processing Systems 32, pages: 444-454, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
On the Fairness of Disentangled Representations

Locatello, F., Abbati, G., Rainforth, T., Bauer, S., Schölkopf, B., Bachem, O.

Advances in Neural Information Processing Systems 32, pages: 14584-14597, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Limitations of the empirical Fisher approximation for natural gradient descent

Kunstner, F., Hennig, P., Balles, L.

Advances in Neural Information Processing Systems 32, pages: 4158-4169, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei pn

link (url) [BibTex]

link (url) [BibTex]


no image
A Model to Search for Synthesizable Molecules

Bradshaw, J., Paige, B., Kusner, M. J., Segler, M., Hernández-Lobato, J. M.

Advances in Neural Information Processing Systems 32, pages: 7935-7947, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Kernel Stein Tests for Multiple Model Comparison

Lim, J. N., Yamada, M., Schölkopf, B., Jitkrittum, W.

Advances in Neural Information Processing Systems 32, pages: 2240-2250, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset

Gondal, M. W., Wuthrich, M., Miladinovic, D., Locatello, F., Breidt, M., Volchkov, V., Akpo, J., Bachem, O., Schölkopf, B., Bauer, S.

Advances in Neural Information Processing Systems 32, pages: 15714-15725, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

am ei sf

link (url) [BibTex]

link (url) [BibTex]


no image
Convergence Guarantees for Adaptive Bayesian Quadrature Methods

Kanagawa, M., Hennig, P.

Advances in Neural Information Processing Systems 32, pages: 6234-6245, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei pn

link (url) [BibTex]

link (url) [BibTex]


no image
Are Disentangled Representations Helpful for Abstract Visual Reasoning?

van Steenkiste, S., Locatello, F., Schmidhuber, J., Bachem, O.

Advances in Neural Information Processing Systems 32, pages: 14222-14235, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Perceiving the arrow of time in autoregressive motion

Meding, K., Janzing, D., Schölkopf, B., Wichmann, F. A.

Advances in Neural Information Processing Systems 32, pages: 2303-2314, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Stochastic Frank-Wolfe for Composite Convex Minimization

Locatello, F., Yurtsever, A., Fercoq, O., Cevher, V.

Advances in Neural Information Processing Systems 32, pages: 14246-14256, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Flex-Convolution

Groh*, F., Wieschollek*, P., Lensch, H. P. A.

Computer Vision - ACCV 2018 - 14th Asian Conference on Computer Vision, 11361, pages: 105-122, Lecture Notes in Computer Science, (Editors: Jawahar, C. V. and Li, Hongdong and Mori, Greg and Schindler, Konrad), Springer International Publishing, December 2019, *equal contribution (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Experience Reuse with Probabilistic Movement Primitives

Stark, S., Peters, J., Rueckert, E.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1210-1217, IEEE, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), November 2019 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Learning to Explore in Motion and Interaction Tasks
Learning to Explore in Motion and Interaction Tasks

Bogdanovic, M., Righetti, L.

Proceedings 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 2686-2692, IEEE, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), November 2019, ISSN: 2153-0866 (conference)

Abstract
Model free reinforcement learning suffers from the high sampling complexity inherent to robotic manipulation or locomotion tasks. Most successful approaches typically use random sampling strategies which leads to slow policy convergence. In this paper we present a novel approach for efficient exploration that leverages previously learned tasks. We exploit the fact that the same system is used across many tasks and build a generative model for exploration based on data from previously solved tasks to improve learning new tasks. The approach also enables continuous learning of improved exploration strategies as novel tasks are learned. Extensive simulations on a robot manipulator performing a variety of motion and contact interaction tasks demonstrate the capabilities of the approach. In particular, our experiments suggest that the exploration strategy can more than double learning speed, especially when rewards are sparse. Moreover, the algorithm is robust to task variations and parameter tuning, making it beneficial for complex robotic problems.

mg

DOI [BibTex]

DOI [BibTex]


no image
Improving Local Trajectory Optimisation using Probabilistic Movement Primitives

Shyam, R. A., Lightbody, P., Das, G., Liu, P., Gomez-Gonzalez, S., Neumann, G.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 2666-2671, IEEE, International Conference on Intelligent Robots and Systems 2019 (IROS) , November 2019 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Attacking Optical Flow
Attacking Optical Flow

Ranjan, A., Janai, J., Geiger, A., Black, M. J.

In Proceedings International Conference on Computer Vision (ICCV), pages: 2404-2413, IEEE, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), November 2019, ISSN: 2380-7504 (inproceedings)

Abstract
Deep neural nets achieve state-of-the-art performance on the problem of optical flow estimation. Since optical flow is used in several safety-critical applications like self-driving cars, it is important to gain insights into the robustness of those techniques. Recently, it has been shown that adversarial attacks easily fool deep neural networks to misclassify objects. The robustness of optical flow networks to adversarial attacks, however, has not been studied so far. In this paper, we extend adversarial patch attacks to optical flow networks and show that such attacks can compromise their performance. We show that corrupting a small patch of less than 1% of the image size can significantly affect optical flow estimates. Our attacks lead to noisy flow estimates that extend significantly beyond the region of the attack, in many cases even completely erasing the motion of objects in the scene. While networks using an encoder-decoder architecture are very sensitive to these attacks, we found that networks using a spatial pyramid architecture are less affected. We analyse the success and failure of attacking both architectures by visualizing their feature maps and comparing them to classical optical flow techniques which are robust to these attacks. We also demonstrate that such attacks are practical by placing a printed pattern into real scenes.

avg ps

Video Project Page Paper Supplementary Material link (url) DOI [BibTex]

Video Project Page Paper Supplementary Material link (url) DOI [BibTex]


A Learnable Safety Measure
A Learnable Safety Measure

Heim, S., Rohr, A. V., Trimpe, S., Badri-Spröwitz, A.

Conference on Robot Learning, November 2019 (conference) Accepted

dlg ics

Arxiv [BibTex]

Arxiv [BibTex]


no image
Multimodal Uncertainty Reduction for Intention Recognition in Human-Robot Interaction

Trick, S., Koert, D., Peters, J., Rothkopf, C. A.

International Conference on Intelligent Robots and Systems (IROS), pages: 7009-7016, IEEE, November 2019 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Deep Neural Network Approach in Electrical Impedance Tomography-Based Real-Time Soft Tactile Sensor

Park, H., Lee, H., Park, K., Mo, S., Kim, J.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 7447-7452, Macau, China, November 2019 (inproceedings)

Abstract
Recently, a whole-body tactile sensing have emerged in robotics for safe human-robot interaction. A key issue in the whole-body tactile sensing is ensuring large-area manufacturability and high durability. To fulfill these requirements, a reconstruction method called electrical impedance tomography (EIT) was adopted in large-area tactile sensing. This method maps voltage measurements to conductivity distribution using only a few number of measurement electrodes. A common approach for the mapping is using a linearized model derived from the Maxwell's equation. This linearized model shows fast computation time and moderate robustness against measurement noise but reconstruction accuracy is limited. In this paper, we propose a novel nonlinear EIT algorithm through Deep Neural Network (DNN) approach to improve the reconstruction accuracy of EIT-based tactile sensors. The neural network architecture with rectified linear unit (ReLU) function ensured extremely low computational time (0.002 seconds) and nonlinear network structure which provides superior measurement accuracy. The DNN model was trained with dataset synthesized in simulation environment. To achieve the robustness against measurement noise, the training proceeded with additive Gaussian noise that estimated through actual measurement noise. For real sensor application, the trained DNN model was transferred to a conductive fabric-based soft tactile sensor. For validation, the reconstruction error and noise robustness were mainly compared using conventional linearized model and proposed approach in simulation environment. As a demonstration, the tactile sensor equipped with the trained DNN model is presented for a contact force estimation.

hi

DOI [BibTex]

DOI [BibTex]


no image
Deep Lagrangian Networks for end-to-end learning of energy-based control for under-actuated systems

Lutter, M., Listmann, K., Peters, J.

International Conference on Intelligent Robots and Systems (IROS), pages: 7718-7725, IEEE, November 2019 (conference)

ei

DOI [BibTex]

DOI [BibTex]


AirCap -- Aerial Outdoor Motion Capture
AirCap – Aerial Outdoor Motion Capture

Ahmad, A., Price, E., Tallamraju, R., Saini, N., Lawless, G., Ludwig, R., Martinovic, I., Bülthoff, H. H., Black, M. J.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019), Workshop on Aerial Swarms, November 2019 (misc)

Abstract
This paper presents an overview of the Grassroots project Aerial Outdoor Motion Capture (AirCap) running at the Max Planck Institute for Intelligent Systems. AirCap's goal is to achieve markerless, unconstrained, human motion capture (mocap) in unknown and unstructured outdoor environments. To that end, we have developed an autonomous flying motion capture system using a team of aerial vehicles (MAVs) with only on-board, monocular RGB cameras. We have conducted several real robot experiments involving up to 3 aerial vehicles autonomously tracking and following a person in several challenging scenarios using our approach of active cooperative perception developed in AirCap. Using the images captured by these robots during the experiments, we have demonstrated a successful offline body pose and shape estimation with sufficiently high accuracy. Overall, we have demonstrated the first fully autonomous flying motion capture system involving multiple robots for outdoor scenarios.

ps

Talk slides Project Page Project Page [BibTex]

Talk slides Project Page Project Page [BibTex]


no image
Reinforcement Learning of Trajectory Distributions: Applications in Assisted Teleoperation and Motion Planning

Ewerton, M., Guilherme, M., Koert, D., Kolev, Z., Takahashi, M., Peters, J.

International Conference on Intelligent Robots and Systems (IROS), pages: 4294-4300, IEEE, November 2019 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Interactive Augmented Reality for Robot-Assisted Surgery

Forte, M., Kuchenbecker, K. J.

Workshop extended abstract presented as a podium presentation at the IROS Workshop on Legacy Disruptors in Applied Telerobotics, Macau, November 2019 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Chance-Constrained Trajectory Optimization for Non-linear Systems with Unknown Stochastic Dynamics

Celik, O., Abdulsamad, H., Peters, J.

International Conference on Intelligent Robots and Systems (IROS), pages: 6828-6833, IEEE, November 2019 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Generalized Multiple Correlation Coefficient as a Similarity Measurement between Trajectories

Urain, J., Peters, J.

International Conference on Intelligent Robots and Systems (IROS), pages: 1363-1369, IEEE, November 2019 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Markerless Outdoor Human Motion Capture Using Multiple Autonomous Micro Aerial Vehicles
Markerless Outdoor Human Motion Capture Using Multiple Autonomous Micro Aerial Vehicles

Saini, N., Price, E., Tallamraju, R., Enficiaud, R., Ludwig, R., Martinović, I., Ahmad, A., Black, M.

Proceedings 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages: 823-832, IEEE, International Conference on Computer Vision (ICCV), October 2019 (conference)

Abstract
Capturing human motion in natural scenarios means moving motion capture out of the lab and into the wild. Typical approaches rely on fixed, calibrated, cameras and reflective markers on the body, significantly limiting the motions that can be captured. To make motion capture truly unconstrained, we describe the first fully autonomous outdoor capture system based on flying vehicles. We use multiple micro-aerial-vehicles(MAVs), each equipped with a monocular RGB camera, an IMU, and a GPS receiver module. These detect the person, optimize their position, and localize themselves approximately. We then develop a markerless motion capture method that is suitable for this challenging scenario with a distant subject, viewed from above, with approximately calibrated and moving cameras. We combine multiple state-of-the-art 2D joint detectors with a 3D human body model and a powerful prior on human pose. We jointly optimize for 3D body pose and camera pose to robustly fit the 2D measurements. To our knowledge, this is the first successful demonstration of outdoor, full-body, markerless motion capture from autonomous flying vehicles.

ps

Code Data Video Paper Manuscript DOI Project Page [BibTex]

Code Data Video Paper Manuscript DOI Project Page [BibTex]


Resolving {3D} Human Pose Ambiguities with {3D} Scene Constraints
Resolving 3D Human Pose Ambiguities with 3D Scene Constraints

Hassan, M., Choutas, V., Tzionas, D., Black, M. J.

In Proceedings International Conference on Computer Vision, pages: 2282-2292, IEEE, International Conference on Computer Vision, October 2019 (inproceedings)

Abstract
To understand and analyze human behavior, we need to capture humans moving in, and interacting with, the world. Most existing methods perform 3D human pose estimation without explicitly considering the scene. We observe however that the world constrains the body and vice-versa. To motivate this, we show that current 3D human pose estimation methods produce results that are not consistent with the 3D scene. Our key contribution is to exploit static 3D scene structure to better estimate human pose from monocular images. The method enforces Proximal Relationships with Object eXclusion and is called PROX. To test this, we collect a new dataset composed of 12 different 3D scenes and RGB sequences of 20 subjects moving in and interacting with the scenes. We represent human pose using the 3D human body model SMPL-X and extend SMPLify-X to estimate body pose using scene constraints. We make use of the 3D scene information by formulating two main constraints. The interpenetration constraint penalizes intersection between the body model and the surrounding 3D scene. The contact constraint encourages specific parts of the body to be in contact with scene surfaces if they are close enough in distance and orientation. For quantitative evaluation we capture a separate dataset with 180 RGB frames in which the ground-truth body pose is estimated using a motion-capture system. We show quantitatively that introducing scene constraints significantly reduces 3D joint error and vertex error. Our code and data are available for research at https://prox.is.tue.mpg.de.

ps

pdf poster link (url) DOI [BibTex]

pdf poster link (url) DOI [BibTex]


Learning to Reconstruct {3D} Human Pose and Shape via Model-fitting in the Loop
Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the Loop

Kolotouros, N., Pavlakos, G., Black, M. J., Daniilidis, K.

Proceedings International Conference on Computer Vision (ICCV), pages: 2252-2261, IEEE, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), October 2019, ISSN: 2380-7504 (conference)

Abstract
Model-based human pose estimation is currently approached through two different paradigms. Optimization-based methods fit a parametric body model to 2D observations in an iterative manner, leading to accurate image-model alignments, but are often slow and sensitive to the initialization. In contrast, regression-based methods, that use a deep network to directly estimate the model parameters from pixels, tend to provide reasonable, but not pixel accurate, results while requiring huge amounts of supervision. In this work, instead of investigating which approach is better, our key insight is that the two paradigms can form a strong collaboration. A reasonable, directly regressed estimate from the network can initialize the iterative optimization making the fitting faster and more accurate. Similarly, a pixel accurate fit from iterative optimization can act as strong supervision for the network. This is the core of our proposed approach SPIN (SMPL oPtimization IN the loop). The deep network initializes an iterative optimization routine that fits the body model to 2D joints within the training loop, and the fitted estimate is subsequently used to supervise the network. Our approach is self-improving by nature, since better network estimates can lead the optimization to better solutions, while more accurate optimization fits provide better supervision for the network. We demonstrate the effectiveness of our approach in different settings, where 3D ground truth is scarce, or not available, and we consistently outperform the state-of-the-art model-based pose estimation approaches by significant margins.

ps

pdf code project DOI [BibTex]

pdf code project DOI [BibTex]


Three-D Safari: Learning to Estimate Zebra Pose, Shape, and Texture from Images "In the Wild"
Three-D Safari: Learning to Estimate Zebra Pose, Shape, and Texture from Images "In the Wild"

Zuffi, S., Kanazawa, A., Berger-Wolf, T., Black, M. J.

In International Conference on Computer Vision, pages: 5358-5367, IEEE, International Conference on Computer Vision, October 2019 (inproceedings)

Abstract
We present the first method to perform automatic 3D pose, shape and texture capture of animals from images acquired in-the-wild. In particular, we focus on the problem of capturing 3D information about Grevy's zebras from a collection of images. The Grevy's zebra is one of the most endangered species in Africa, with only a few thousand individuals left. Capturing the shape and pose of these animals can provide biologists and conservationists with information about animal health and behavior. In contrast to research on human pose, shape and texture estimation, training data for endangered species is limited, the animals are in complex natural scenes with occlusion, they are naturally camouflaged, travel in herds, and look similar to each other. To overcome these challenges, we integrate the recent SMAL animal model into a network-based regression pipeline, which we train end-to-end on synthetically generated images with pose, shape, and background variation. Going beyond state-of-the-art methods for human shape and pose estimation, our method learns a shape space for zebras during training. Learning such a shape space from images using only a photometric loss is novel, and the approach can be used to learn shape in other settings with limited 3D supervision. Moreover, we couple 3D pose and shape prediction with the task of texture synthesis, obtaining a full texture map of the animal from a single image. We show that the predicted texture map allows a novel per-instance unsupervised optimization over the network features. This method, SMALST (SMAL with learned Shape and Texture) goes beyond previous work, which assumed manual keypoints and/or segmentation, to regress directly from pixels to 3D animal shape, pose and texture. Code and data are available at https://github.com/silviazuffi/smalst

ps

code pdf supmat iccv19 presentation DOI Project Page [BibTex]

code pdf supmat iccv19 presentation DOI Project Page [BibTex]


EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association
EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

Strecke, M., Stückler, J.

Proceedings International Conference on Computer Vision 2019 (ICCV), pages: 5864-5873, IEEE, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), October 2019 (conference)

ev

preprint Project page Code Poster DOI [BibTex]

preprint Project page Code Poster DOI [BibTex]


Trunk Pitch Oscillations for Joint Load Redistribution in Humans and Humanoid Robots
Trunk Pitch Oscillations for Joint Load Redistribution in Humans and Humanoid Robots

Drama, Ö., Badri-Spröwitz, A.

Proceedings of 2019 IEEE-RAS 19th International Conference on Humanoid Robots, pages: 531-536, IEEE, Humanoids, October 2019 (conference)

Abstract
Creating natural-looking running gaits for humanoid robots is a complex task due to the underactuated degree of freedom in the trunk, which makes the motion planning and control difficult. The research on trunk movements in human locomotion is insufficient, and no formalism is known to transfer human motion patterns onto robots. Related work mostly focuses on the lower extremities, and simplifies the problem by stabilizing the trunk at a fixed angle. In contrast, humans display significant trunk motions that follow the natural dynamics of the gait. In this work, we use a spring-loaded inverted pendulum model with a trunk (TSLIP) together with a virtual point (VP) target to create trunk oscillations and investigate the impact of these movements. We analyze how the VP location and forward speed determine the direction and magnitude of the trunk oscillations. We show that positioning the VP below the center of mass (CoM) can explain the forward trunk pitching observed in human running. The VP below the CoM leads to a synergistic work between the hip and leg, reducing the leg loading. However, it comes at the cost of increased peak hip torque. Our results provide insights for leveraging the trunk motion to redistribute joint loads and potentially improve the energy efficiency in humanoid robots.

dlg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Energy Conscious Over-actuated Multi-Agent Payload Transport Robot: Simulations and Preliminary Physical Validation

Tallamraju, R., Verma, P., Sripada, V., Agrawal, S., Karlapalem, K.

28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pages: 1-7, IEEE, 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), October 2019 (conference)

ps

DOI [BibTex]

DOI [BibTex]


Efficient Learning on Point Clouds With Basis Point Sets
Efficient Learning on Point Clouds With Basis Point Sets

Prokudin, S., Lassner, C., Romero, J.

International Conference on Computer Vision, pages: 4332-4341, October 2019 (conference)

Abstract
With an increased availability of 3D scanning technology, point clouds are moving into the focus of computer vision as a rich representation of everyday scenes. However, they are hard to handle for machine learning algorithms due to the unordered structure. One common approach is to apply voxelization, which dramatically increases the amount of data stored and at the same time loses details through discretization. Recently, deep learning models with hand-tailored architectures were proposed to handle point clouds directly and achieve input permutation invariance. However, these architectures use an increased number of parameters and are computationally inefficient. In this work we propose basis point sets as a highly efficient and fully general way to process point clouds with machine learning algorithms. Basis point sets are a residual representation that can be computed efficiently and can be used with standard neural network architectures. Using the proposed representation as the input to a relatively simple network allows us to match the performance of PointNet on a shape classification task while using three order of magnitudes less floating point operations. In a second experiment, we show how proposed representation can be used for obtaining high resolution meshes from noisy 3D scans. Here, our network achieves performance comparable to the state-of-the-art computationally intense multi-step frameworks, in one network pass that can be done in less than 1ms.

ps

code pdf [BibTex]

code pdf [BibTex]


End-to-end Learning for Graph Decomposition
End-to-end Learning for Graph Decomposition

Song, J., Andres, B., Black, M., Hilliges, O., Tang, S.

In International Conference on Computer Vision, pages: 10093-10102, October 2019 (inproceedings)

Abstract
Deep neural networks provide powerful tools for pattern recognition, while classical graph algorithms are widely used to solve combinatorial problems. In computer vision, many tasks combine elements of both pattern recognition and graph reasoning. In this paper, we study how to connect deep networks with graph decomposition into an end-to-end trainable framework. More specifically, the minimum cost multicut problem is first converted to an unconstrained binary cubic formulation where cycle consistency constraints are incorporated into the objective function. The new optimization problem can be viewed as a Conditional Random Field (CRF) in which the random variables are associated with the binary edge labels. Cycle constraints are introduced into the CRF as high-order potentials. A standard Convolutional Neural Network (CNN) provides the front-end features for the fully differentiable CRF. The parameters of both parts are optimized in an end-to-end manner. The efficacy of the proposed learning algorithm is demonstrated via experiments on clustering MNIST images and on the challenging task of real-world multi-people pose estimation.

ps

PDF [BibTex]

PDF [BibTex]


Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics
Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics

Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.

International Conference on Computer Vision, October 2019 (conference)

Abstract
Deep learning based 3D reconstruction techniques have recently achieved impressive results. However, while state-of-the-art methods are able to output complex 3D geometry, it is not clear how to extend these results to time-varying topologies. Approaches treating each time step individually lack continuity and exhibit slow inference, while traditional 4D reconstruction methods often utilize a template model or discretize the 4D space at fixed resolution. In this work, we present Occupancy Flow, a novel spatio-temporal representation of time-varying 3D geometry with implicit correspondences. Towards this goal, we learn a temporally and spatially continuous vector field which assigns a motion vector to every point in space and time. In order to perform dense 4D reconstruction from images or sparse point clouds, we combine our method with a continuous 3D representation. Implicitly, our model yields correspondences over time, thus enabling fast inference while providing a sound physical description of the temporal dynamics. We show that our method can be used for interpolation and reconstruction tasks, and demonstrate the accuracy of the learned correspondences. We believe that Occupancy Flow is a promising new 4D representation which will be useful for a variety of spatio-temporal reconstruction tasks.

avg

pdf poster suppmat code Project page video blog [BibTex]


no image
Neural Signatures of Motor Skill in the Resting Brain

Ozdenizci, O., Meyer, T., Wichmann, F., Peters, J., Schölkopf, B., Cetin, M., Grosse-Wentrup, M.

Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC 2019), pages: 4387-4394, IEEE, October 2019 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Texture Fields: Learning Texture Representations in Function Space
Texture Fields: Learning Texture Representations in Function Space

Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., Geiger, A.

International Conference on Computer Vision, October 2019 (conference)

Abstract
In recent years, substantial progress has been achieved in learning-based reconstruction of 3D objects. At the same time, generative models were proposed that can generate highly realistic images. However, despite this success in these closely related tasks, texture reconstruction of 3D objects has received little attention from the research community and state-of-the-art methods are either limited to comparably low resolution or constrained experimental setups. A major reason for these limitations is that common representations of texture are inefficient or hard to interface for modern deep learning techniques. In this paper, we propose Texture Fields, a novel texture representation which is based on regressing a continuous 3D function parameterized with a neural network. Our approach circumvents limiting factors like shape discretization and parameterization, as the proposed texture representation is independent of the shape representation of the 3D object. We show that Texture Fields are able to represent high frequency texture and naturally blend with modern deep learning techniques. Experimentally, we find that Texture Fields compare favorably to state-of-the-art methods for conditional texture reconstruction of 3D objects and enable learning of probabilistic generative models for texturing unseen 3D models. We believe that Texture Fields will become an important building block for the next generation of generative 3D models.

avg

pdf suppmat video poster blog Project Page [BibTex]


no image
Robust Humanoid Locomotion Using Trajectory Optimization and Sample-Efficient Learning

Yeganegi, M. H., Khadiv, M., Moosavian, S. A. A., Zhu, J., Prete, A. D., Righetti, L.

Proceedings International Conference on Humanoid Robots, IEEE, 2019 IEEE-RAS International Conference on Humanoid Robots, October 2019 (conference)

Abstract
Trajectory optimization (TO) is one of the most powerful tools for generating feasible motions for humanoid robots. However, including uncertainties and stochasticity in the TO problem to generate robust motions can easily lead to intractable problems. Furthermore, since the models used in TO have always some level of abstraction, it can be hard to find a realistic set of uncertainties in the model space. In this paper we leverage a sample-efficient learning technique (Bayesian optimization) to robustify TO for humanoid locomotion. The main idea is to use data from full-body simulations to make the TO stage robust by tuning the cost weights. To this end, we split the TO problem into two phases. The first phase solves a convex optimization problem for generating center of mass (CoM) trajectories based on simplified linear dynamics. The second stage employs iterative Linear-Quadratic Gaussian (iLQG) as a whole-body controller to generate full body control inputs. Then we use Bayesian optimization to find the cost weights to use in the first stage that yields robust performance in the simulation/experiment, in the presence of different disturbance/uncertainties. The results show that the proposed approach is able to generate robust motions for different sets of disturbances and uncertainties.

mg

https://arxiv.org/abs/1907.04616 link (url) [BibTex]

https://arxiv.org/abs/1907.04616 link (url) [BibTex]


{AMASS}: Archive of Motion Capture as Surface Shapes
AMASS: Archive of Motion Capture as Surface Shapes

Mahmood, N., Ghorbani, N., Troje, N. F., Pons-Moll, G., Black, M. J.

Proceedings International Conference on Computer Vision, pages: 5442-5451, IEEE, International Conference on Computer Vision (ICCV), October 2019 (conference)

Abstract
Large datasets are the cornerstone of recent advances in computer vision using deep learning. In contrast, existing human motion capture (mocap) datasets are small and the motions limited, hampering progress on learning models of human motion. While there are many different datasets available, they each use a different parameterization of the body, making it difficult to integrate them into a single meta dataset. To address this, we introduce AMASS, a large and varied database of human motion that unifies 15 different optical marker-based mocap datasets by representing them within a common framework and parameterization. We achieve this using a new method, MoSh++, that converts mocap data into realistic 3D human meshes represented by a rigged body model. Here we use SMPL [26], which is widely used and provides a standard skeletal representation as well as a fully rigged surface mesh. The method works for arbitrary marker-sets, while recovering soft-tissue dynamics and realistic hand motion. We evaluate MoSh++ and tune its hyper-parameters using a new dataset of 4D body scans that are jointly recorded with marker-based mocap. The consistent representation of AMASS makes it readily useful for animation, visualization, and generating training data for deep learning. Our dataset is significantly richer than previous human motion collections, having more than 40 hours of motion data, spanning over 300 subjects, more than 11000 motions, and is available for research at https://amass.is.tue.mpg.de/.

ps

code pdf suppl arxiv project website video poster AMASS_Poster DOI [BibTex]

code pdf suppl arxiv project website video poster AMASS_Poster DOI [BibTex]


no image
Building a Library of Tactile Skills Based on FingerVision

Belousov, B., Sadybakasov, A., Wibranek, B., Veiga, F., Tessmann, O., Peters, J.

International Conference on Humanoid Robots (Humanoids), pages: 717-722, IEEE, October 2019 (conference)

ei

DOI [BibTex]

DOI [BibTex]


The Influence of Visual Perspective on Body Size Estimation in Immersive Virtual Reality
The Influence of Visual Perspective on Body Size Estimation in Immersive Virtual Reality

Thaler, A., Pujades, S., Stefanucci, J. K., Creem-Regehr, S. H., Tesch, J., Black, M. J., Mohler, B. J.

In ACM Symposium on Applied Perception, pages: 1-12, ACM, SAP '19: ACM Symposium on Applied Perception 2019, September 2019 (inproceedings)

Abstract
The creation of realistic self-avatars that users identify with is important for many virtual reality applications. However, current approaches for creating biometrically plausible avatars that represent a particular individual require expertise and are time-consuming. We investigated the visual perception of an avatar’s body dimensions by asking males and females to estimate their own body weight and shape on a virtual body using a virtual reality avatar creation tool. In a method of adjustment task, the virtual body was presented in an HTC Vive head-mounted display either co-located with (first-person perspective) or facing (third-person perspective) the participants. Participants adjusted the body weight and dimensions of various body parts to match their own body shape and size. Both males and females underestimated their weight by 10-20% in the virtual body, but the estimates of the other body dimensions were relatively accurate and within a range of ±6%. There was a stronger influence of visual perspective on the estimates for males, but this effect was dependent on the amount of control over the shape of the virtual body, indicating that the results might be caused by where in the body the weight changes expressed themselves. These results suggest that this avatar creation tool could be used to allow participants to make a relatively accurate self-avatar in terms of adjusting body part dimensions, but not weight, and that the influence of visual perspective and amount of control needed over the body shape are likely gender-specific.

ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Method for providing a three dimensional body model
Method for providing a three dimensional body model

Loper, M., Mahmood, N., Black, M.

September 2019, U.S.~Patent 10,417,818 (misc)

Abstract
A method for providing a three-dimensional body model which may be applied for an animation, based on a moving body, wherein the method comprises providing a parametric three-dimensional body model, which allows shape and pose variations; applying a standard set of body markers; optimizing the set of body markers by generating an additional set of body markers and applying the same for providing 3D coordinate marker signals for capturing shape and pose of the body and dynamics of soft tissue; and automatically providing an animation by processing the 3D coordinate marker signals in order to provide a personalized three-dimensional body model, based on estimated shape and an estimated pose of the body by means of predicted marker locations.

ps

MoSh Project pdf [BibTex]


NoVA: Learning to See in Novel Viewpoints and Domains
NoVA: Learning to See in Novel Viewpoints and Domains

Coors, B., Condurache, A. P., Geiger, A.

In 2019 International Conference on 3D Vision (3DV), pages: 116-125, IEEE, 2019 International Conference on 3D Vision (3DV), September 2019 (inproceedings)

Abstract
Domain adaptation techniques enable the re-use and transfer of existing labeled datasets from a source to a target domain in which little or no labeled data exists. Recently, image-level domain adaptation approaches have demonstrated impressive results in adapting from synthetic to real-world environments by translating source images to the style of a target domain. However, the domain gap between source and target may not only be caused by a different style but also by a change in viewpoint. This case necessitates a semantically consistent translation of source images and labels to the style and viewpoint of the target domain. In this work, we propose the Novel Viewpoint Adaptation (NoVA) model, which enables unsupervised adaptation to a novel viewpoint in a target domain for which no labeled data is available. NoVA utilizes an explicit representation of the 3D scene geometry to translate source view images and labels to the target view. Experiments on adaptation to synthetic and real-world datasets show the benefit of NoVA compared to state-of-the-art domain adaptation approaches on the task of semantic segmentation.

avg

pdf suppmat poster video DOI [BibTex]

pdf suppmat poster video DOI [BibTex]