Header logo is de


2020


Postural stability in human running with step-down perturbations: an experimental and numerical study
Postural stability in human running with step-down perturbations: an experimental and numerical study

Özge Drama, , Johanna Vielemeyer, , Alexander Badri-Spröwitz, , Müller, R.

Royal Society Open Science, 7, November 2020 (article)

Abstract
Postural stability is one of the most crucial elements in bipedal locomotion. Bipeds are dynamically unstable and need to maintain their trunk upright against the rotations induced by the ground reaction forces (GRFs), especially when running. Gait studies report that the GRF vectors focus around a virtual point above the center of mass (VPA), while the trunk moves forward in pitch axis during the stance phase of human running. However, a recent simulation study suggests that a virtual point below the center of mass (VPB) might be present in human running, since a VPA yields backward trunk rotation during the stance phase. In this work, we perform a gait analysis to investigate the existence and location of the VP in human running at 5 m s−1, and support our findings numerically using the spring-loaded inverted pendulum model with a trunk (TSLIP). We extend our analysis to include perturbations in terrain height (visible and camouflaged), and investigate the response of the VP mechanism to step-down perturbations both experimentally and numerically. Our experimental results show that the human running gait displays a VPB of ≈ −30 cm and a forward trunk motion during the stance phase. The camouflaged step-down perturbations affect the location of the VPB. Our simulation results suggest that the VPB is able to encounter the step-down perturbations and bring the system back to its initial equilibrium state.

dlg

link (url) DOI [BibTex]

2020


link (url) DOI [BibTex]


A little damping goes a long way: a simulation study of how damping influences task-level stability in running
A little damping goes a long way: a simulation study of how damping influences task-level stability in running

Heim, S., Millard, M., Mouel, C. L., Badri-Spröwitz, A.

Biology Letters, 16(9), September 2020 (article)

Abstract
It is currently unclear if damping plays a functional role in legged locomotion, and simple models often do not include damping terms. We present a new model with a damping term that is isolated from other parameters: that is, the damping term can be adjusted without retuning other model parameters for nominal motion. We systematically compare how increased damping affects stability in the face of unexpected ground-height perturbations. Unlike most studies, we focus on task-level stability: instead of observing whether trajectories converge towards a nominal limit-cycle, we quantify the ability to avoid falls using a recently developed mathematical measure. This measure allows trajectories to be compared quantitatively instead of only being separated into a binary classification of ‘stable' or ‘unstable'. Our simulation study shows that increased damping contributes significantly to task-level stability; however, this benefit quickly plateaus after only a small amount of damping. These results suggest that the low intrinsic damping values observed experimentally may have stability benefits and are not simply minimized for energetic reasons. All Python code and data needed to generate our results are available open source.

dlg ics

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Effective Viscous Damping Enables Morphological Computation in Legged Locomotion
Effective Viscous Damping Enables Morphological Computation in Legged Locomotion

Mo, A., Izzi, F., Haeufle, D. F. B., Badri-Spröwitz, A.

Frontiers Robots and Ai, 7:110, August 2020 (article)

Abstract
Muscle models and animal observations suggest that physical damping is beneficial for stabilization. Still, only a few implementations of mechanical damping exist in compliant robotic legged locomotion. It remains unclear how physical damping can be exploited for locomotion tasks, while its advantages as sensor-free, adaptive force- and negative work-producing actuators are promising. In a simplified numerical leg model, we studied the energy dissipation from viscous and Coulomb damping during vertical drops with ground-level perturbations. A parallel spring-damper is engaged between touch-down and mid-stance, and its damper auto-disengages during mid-stance and takeoff. Our simulations indicate that an adjustable and viscous damper is desired. In hardware we explored effective viscous damping and adjustability and quantified the dissipated energy. We tested two mechanical, leg-mounted damping mechanisms; a commercial hydraulic damper, and a custom-made pneumatic damper. The pneumatic damper exploits a rolling diaphragm with an adjustable orifice, minimizing Coulomb damping effects while permitting adjustable resistance. Experimental results show that the leg-mounted, hydraulic damper exhibits the most effective viscous damping. Adjusting the orifice setting did not result in substantial changes of dissipated energy per drop, unlike adjusting damping parameters in the numerical model. Consequently, we also emphasize the importance of characterizing physical dampers during real legged impacts to evaluate their effectiveness for compliant legged locomotion.

dlg

Youtube link (url) DOI [BibTex]

Youtube link (url) DOI [BibTex]


Learning of sub-optimal gait controllers for magnetic walking soft millirobots
Learning of sub-optimal gait controllers for magnetic walking soft millirobots

Culha, U., Demir, S. O., Trimpe, S., Sitti, M.

In Proceedings of Robotics: Science and Systems, 2020 (inproceedings)

Abstract
Untethered small-scale soft robots have promising applications in minimally invasive surgery, targeted drug delivery, and bioengineering applications as they can access confined spaces in the human body. However, due to highly nonlinear soft continuum deformation kinematics, inherent stochastic variability during fabrication at the small scale, and lack of accurate models, the conventional control methods cannot be easily applied. Adaptivity of robot control is additionally crucial for medical operations, as operation environments show large variability, and robot materials may degrade or change over time,which would have deteriorating effects on the robot motion and task performance. Therefore, we propose using a probabilistic learning approach for millimeter-scale magnetic walking soft robots using Bayesian optimization (BO) and Gaussian processes (GPs). Our approach provides a data-efficient learning scheme to find controller parameters while optimizing the stride length performance of the walking soft millirobot robot within a small number of physical experiments. We demonstrate adaptation to fabrication variabilities in three different robots and to walking surfaces with different roughness. We also show an improvement in the learning performance by transferring the learning results of one robot to the others as prior information.

pi ics

link (url) DOI [BibTex]


SIMULTANEOUS CALIBRATION METHOD FOR MAGNETIC LOCALIZATION AND ACTUATION SYSTEMS
SIMULTANEOUS CALIBRATION METHOD FOR MAGNETIC LOCALIZATION AND ACTUATION SYSTEMS

Sitti, M., Son, D., Dong, X.

2020, US Patent App. 16/696,605 (misc)

Abstract
The invention relates to a method of simultaneously calibrating magnetic actuation and sensing systems for a workspace, wherein the actuation system comprises a plurality of magnetic actuators and the sensing system comprises a plurality of magnetic sensors, wherein all the measured data is fed into a calibration model, wherein the calibration model is based on a sensor measurement model and a magnetic actuation model, and wherein a solution of the model parameters is found via a numerical solver order to calibrate both the actuation and sensing systems at the same time.

pi

[BibTex]


Statistical reprogramming of macroscopic self-assembly with dynamic boundaries
Statistical reprogramming of macroscopic self-assembly with dynamic boundaries

Culha, U., Davidson, Z. S., Mastrangeli, M., Sitti, M.

Proceedings of the National Academy of Sciences, 117(21):11306-11313, 2020 (article)

Abstract
Self-assembly is a ubiquitous process that can generate complex and functional structures via local interactions among a large set of simpler components. The ability to program the self-assembly pathway of component sets elucidates fundamental physics and enables alternative competitive fabrication technologies. Reprogrammability offers further opportunities for tuning structural and material properties but requires reversible selection from multistable self-assembling patterns, which remains a challenge. Here, we show statistical reprogramming of two-dimensional (2D), noncompact self-assembled structures by the dynamic confinement of orbitally shaken and magnetically repulsive millimeter-scale particles. Under a constant shaking regime, we control the rate of radius change of an assembly arena via moving hard boundaries and select among a finite set of self-assembled patterns repeatably and reversibly. By temporarily trapping particles in topologically identified stable states, we also demonstrate 2D reprogrammable stiffness and three-dimensional (3D) magnetic clutching of the self-assembled structures. Our reprogrammable system has prospective implications for the design of granular materials in a multitude of physical scales where out-of-equilibrium self-assembly can be realized with different numbers or types of particles. Our dynamic boundary regulation may also enable robust bottom-up control strategies for novel robotic assembly applications by designing more complex spatiotemporal interactions using mobile robots.

pi

DOI [BibTex]

DOI [BibTex]


FootTile: a Rugged Foot Sensor for Force and Center of Pressure Sensing in Soft Terrain
FootTile: a Rugged Foot Sensor for Force and Center of Pressure Sensing in Soft Terrain

Felix Ruppert, , Badri-Spröwitz, A.

In Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, International Conference on Robotics and Automation, May 2020 (inproceedings) Accepted

Abstract
In this paper, we present FootTile, a foot sensor for reaction force and center of pressure sensing in challenging terrain. We compare our sensor design to standard biomechanical devices, force plates and pressure plates. We show that FootTile can accurately estimate force and pressure distribution during legged locomotion. FootTile weighs 0.9g, has a sampling rate of 330 Hz, a footprint of 10×10 mm and can easily be adapted in sensor range to the required load case. In three experiments, we validate: first, the performance of the individual sensor, second an array of FootTiles for center of pressure sensing and third the ground reaction force estimation during locomotion in granular substrate. We then go on to show the accurate sensing capabilities of the waterproof sensor in liquid mud, as a showcase for real world rough terrain use.

dlg

Youtube1 Youtube2 Presentation link (url) [BibTex]

Youtube1 Youtube2 Presentation link (url) [BibTex]


VP above or below? A new perspective on the story of the virtual point
VP above or below? A new perspective on the story of the virtual point

Drama, Ö., Badri-Spröwitz, A.

Dynamic Walking, May 2020 (poster)

Abstract
The spring inverted pendulum model with an extended trunk (TSLIP) is widely used to investigate the postural stability in bipedal locomotion [1, 2]. The challenge of the model is to define a hip torque that generates feasible gait patterns while stabilizing the floating trunk. The virtual point (VP) method is proposed as a simplified solution, where the hip torque is coupled to the passive compliant leg force via a virtual point. This geometric coupling is based on the assumption that the instantaneous ground reaction forces of the stance phase (GRF) intersect at a single virtual point.

dlg

Poster Abstract link (url) [BibTex]

Poster Abstract link (url) [BibTex]


Viscous Damping in Legged Locomotion
Viscous Damping in Legged Locomotion

Mo, A., Izzi, F., Haeufle, D. F. B., Badri-Spröwitz, A.

Dynamic Walking, May 2020 (poster)

Abstract
Damping likely plays an essential role in legged animal locomotion, but remains an insufficiently understood mechanism. Intrinsic damping muscle forces can potentially add to the joint torque output during unexpected impacts, stabilise movements, convert the system’s energy, and reject unexpected perturbations.

dlg

Abstract Poster link (url) [BibTex]

Abstract Poster link (url) [BibTex]


How Quadrupeds Benefit from Lower Leg Passive Elasticity
How Quadrupeds Benefit from Lower Leg Passive Elasticity

Ruppert, F., Badri-Spröwitz, A.

Dynamic Walking, May 2020 (poster)

Abstract
Recently developed and fully actuated, legged robots start showing exciting locomotion capabilities, but rely heavily on high-power actuators, high-frequency sensors, and complex locomotion controllers. The engineering solutions implemented in these legged robots are much different compared to animals. Vertebrate animals share magnitudes slower neurocontrol signal velocities [1] compared to their robot counterparts. Also, animals feature a plethora of cascaded and underactuated passive elastic structures [2].

dlg

Abstract Poster link (url) [BibTex]


Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots
Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots

Drama, Ö., Badri-Spröwitz, A.

Bioinspiration & Biomimetics, 15(3), March 2020 (article)

Abstract
Bipedal animals have diverse morphologies and advanced locomotion abilities. Terrestrial birds, in particular, display agile, efficient, and robust running motion, in which they exploit the interplay between the body segment masses and moment of inertias. On the other hand, most legged robots are not able to generate such versatile and energy-efficient motion and often disregard trunk movements as a means to enhance their locomotion capabilities. Recent research investigated how trunk motions affect the gait characteristics of humans, but there is a lack of analysis across different bipedal morphologies. To address this issue, we analyze avian running based on a spring-loaded inverted pendulum model with a pronograde (horizontal) trunk. We use a virtual point based control scheme and modify the alignment of the ground reaction forces to assess how our control strategy influences the trunk pitch oscillations and energetics of the locomotion. We derive three potential key strategies to leverage trunk pitch motions that minimize either the energy fluctuations of the center of mass or the work performed by the hip and leg. We suggest how these strategies could be used in legged robotics.

dlg

Youtube Video link (url) DOI [BibTex]

Youtube Video link (url) DOI [BibTex]


Gripping apparatus and method of producing a gripping apparatus
Gripping apparatus and method of producing a gripping apparatus

Song, S., Sitti, M., Drotlef, D., Majidi, C.

Google Patents, Febuary 2020, US Patent App. 16/610,209 (patent)

Abstract
The present invention relates to a gripping apparatus comprising a membrane; a flexible housing; with said membrane being fixedly connected to a periphery of the housing. The invention further relates to a method of producing a gripping apparatus.

pi

[BibTex]

[BibTex]


Potential for elastic soft tissue deformation and mechanosensory function within the lumbosacral spinal canal of birds
Potential for elastic soft tissue deformation and mechanosensory function within the lumbosacral spinal canal of birds

Kamska, V., Daley, M., Badri-Spröwitz, A.

Society of Integrative & Comparative Biology Annual Meeting, January 2020 (poster)

dlg

[BibTex]

[BibTex]


Method and device for reversibly attaching a phase changing metal to an object
Method and device for reversibly attaching a phase changing metal to an object

Zhou Ye, G. Z. L. M. S.

US Patent Application 10675718, January 2020 (patent)

Abstract
A method for reversibly attaching a phase changing metal to an object, the method comprising the steps of: providing a substrate having at least one surface at which the phase changing metal is attached, heating the phase changing metal above a phase changing temperature at which the phase changing metal changes its phase from solid to liquid, bringing the phase changing metal, when the phase changing metal is in the liquid phase or before the phase changing metal is brought into the liquid phase, into contact with the object, permitting the phase changing metal to cool below the phase changing temperature, whereby the phase changing metal becomes solid and the object and the phase changing metal become attached to each other, reheating the phase changing metal above the phase changing temperature to liquefy the phase changing metal, and removing the substrate from the object, with the phase changing metal separating from the object and remaining with the substrate.

pi

US Patent Application Database US Patent Application (PDF) link (url) [BibTex]


Method of actuating a shape changeable member, shape changeable member and actuating system
Method of actuating a shape changeable member, shape changeable member and actuating system

Hu, W., Lum, G. Z., Mastrangeli, M., Sitti, M.

Google Patents, January 2020, US Patent App. 16/477,593 (patent)

Abstract
The present invention relates to a method of actuating a shape changeable member of actuatable material. The invention further relates to a shape changeable member and to a system comprising such a shape changeable member and a magnetic field apparatus.

pi

[BibTex]


Method of fabricating a shape-changeable magentic member, method of producing a shape changeable magnetic member and shape changeable magnetic member
Method of fabricating a shape-changeable magentic member, method of producing a shape changeable magnetic member and shape changeable magnetic member

Guo Zhan Lum, Z. Y. M. S.

US Patent Application 16845646, 2020 (patent)

Abstract
The present invention relates to a method of fabricating a shape-changeable magnetic member comprising a plurality of segments with each segment being able to be magnetized with a desired magnitude and orientation of magnetization, to a method of producing a shape changeable magnetic member composed of a plurality of segments and to a shape changeable magnetic member.

pi

US Patent Application Database US Patent Application (PDF) [BibTex]


Reprogrammable shape morphing of magnetic soft machines
Reprogrammable shape morphing of magnetic soft machines

Alapan, Y., Karacakol, A. C., Guzelhan, S. N., Isik, I., Sitti, M.

Science Advances, 6(38):eabc6414, 2020 (article)

pi

link (url) [BibTex]

link (url) [BibTex]


Twisting and untwisting of twisted nematic elastomers
Twisting and untwisting of twisted nematic elastomers

Davidson, Z. S., Kapernaum, N., Fiene, J., Giesselmann, F., Sitti, M.

Physical Review Materials, 4, pages: 105601, 2020 (article)

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Nanoerythrosome-functionalized biohybrid microswimmers
Nanoerythrosome-functionalized biohybrid microswimmers

Buss, N., Yasa, O., Alapan, Y., Akolpoglu, M. B., Sitti, M.

APL Bioengineering, 4(2):026103, 2020 (article)

pi

DOI [BibTex]

DOI [BibTex]


Towards 5-DoF Control of an Untethered Magnetic Millirobot via MRI Gradient Coils
Towards 5-DoF Control of an Untethered Magnetic Millirobot via MRI Gradient Coils

Onder Erin, D. A. M. E. T., Sitti, M.

In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages: 6551-6557, 2020 (inproceedings)

pi

DOI [BibTex]

DOI [BibTex]


Microribbons composed of directionally self-assembled nanoflakes as highly stretchable ionic neural electrodes
Microribbons composed of directionally self-assembled nanoflakes as highly stretchable ionic neural electrodes

Zhang, M., Guo, R., Chen, K., Wang, Y., Niu, J., Guo, Y., Zhang, Y., Yin, Z., Xia, K., Zhou, B., Wang, H., He, W., Liu, J., Sitti, M., Zhang, Y.

Proceedings of the National Academy of Sciences, 2020 (article)

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Mechanical coupling of puller and pusher active microswimmers influences motility
Mechanical coupling of puller and pusher active microswimmers influences motility

Singh, A. V., Kishore, V., Santamauro, G., Yasa, O., Bill, J., Sitti, M.

Langmuir, 36(19):5435-5443, 2020 (article)

pi

DOI [BibTex]


Thermal Effects on the Crystallization Kinetics, and Interfacial Adhesion of Single-Crystal Phase-Change Gallium
Thermal Effects on the Crystallization Kinetics, and Interfacial Adhesion of Single-Crystal Phase-Change Gallium

Yunusa, M., Lahlou, A., Sitti, M.

Advanced Materials, 32(10):1907453, 2020 (article)

Abstract
Although substrates play an important role upon crystallization of supercooled liquids, the influences of surface temperature and thermal property have remained elusive. Here, the crystallization of supercooled phase‐change gallium (Ga) on substrates with different thermal conductivity is studied. The effect of interfacial temperature on the crystallization kinetics, which dictates thermo‐mechanical stresses between the substrate and the crystallized Ga, is investigated. At an elevated surface temperature, close to the melting point of Ga, an extended single‐crystal growth of Ga on dielectric substrates due to layering effect and annealing is realized without the application of external fields. Adhesive strength at the interfaces depends on the thermal conductivity and initial surface temperature of the substrates. This insight can be applicable to other liquid metals for industrial applications, and sheds more light on phase‐change memory crystallization.

pi

DOI [BibTex]


Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy
Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy

Son, D., Gilbert, H., Sitti, M.

Soft robotics, 7(1):10-21, 2020 (article)

pi

DOI [BibTex]

DOI [BibTex]


Injectable Nanoelectrodes Enable Wireless Deep Brain Stimulation of Native Tissue in Freely Moving Mice
Injectable Nanoelectrodes Enable Wireless Deep Brain Stimulation of Native Tissue in Freely Moving Mice

Kozielski, K. L., Jahanshahi, A., Gilbert, H. B., Yu, Y., Erin, O., Francisco, D., Alosaimi, F., Temel, Y., Sitti, M.

arXiv preprint arXiv:2001.11586, 2020 (article)

pi

DOI [BibTex]

DOI [BibTex]


Characterization and Thermal Management of a DC Motor-Driven Resonant Actuator for Miniature Mobile Robots with Oscillating Limbs
Characterization and Thermal Management of a DC Motor-Driven Resonant Actuator for Miniature Mobile Robots with Oscillating Limbs

Colmenares, D., Kania, R., Liu, M., Sitti, M.

arXiv preprint arXiv:2002.00798, 2020 (article)

Abstract
In this paper, we characterize the performance of and develop thermal management solutions for a DC motor-driven resonant actuator developed for flapping wing micro air vehicles. The actuator, a DC micro-gearmotor connected in parallel with a torsional spring, drives reciprocal wing motion. Compared to the gearmotor alone, this design increased torque and power density by 161.1% and 666.8%, respectively, while decreasing the drawn current by 25.8%. Characterization of the actuator, isolated from nonlinear aerodynamic loading, results in standard metrics directly comparable to other actuators. The micro-motor, selected for low weight considerations, operates at high power for limited duration due to thermal effects. To predict system performance, a lumped parameter thermal circuit model was developed. Critical model parameters for this micro-motor, two orders of magnitude smaller than those previously characterized, were identified experimentally. This included the effects of variable winding resistance, bushing friction, speed-dependent forced convection, and the addition of a heatsink. The model was then used to determine a safe operation envelope for the vehicle and to design a weight-optimal heatsink. This actuator design and thermal modeling approach could be applied more generally to improve the performance of any miniature mobile robot or device with motor-driven oscillating limbs or loads.

pi

[BibTex]


Microscale Polarization Color Pixels from Liquid Crystal Elastomers
Microscale Polarization Color Pixels from Liquid Crystal Elastomers

Guo, Y., Shahsavan, H., Sitti, M.

Advanced Optical Materials, Wiley Online Library, 2020 (article)

pi

[BibTex]

[BibTex]


Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications
Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications

Souri, H., Banerjee, H., Jusufi, A., Radacsi, N., Stokes, A. A., Park, I., Sitti, M., Amjadi, M.

Advanced Intelligent Systems, 2020 (article)

bio pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Microfibers with mushroom-shaped tips for optimal adhesion
Microfibers with mushroom-shaped tips for optimal adhesion

Sitti, M., Aksak, B.

2020, US Patent 10,689,549 (patent)

pi

link (url) [BibTex]


Ultrasound-guided Wireless Tubular Robotic Anchoring System
Ultrasound-guided Wireless Tubular Robotic Anchoring System

Wang, T., Hu, W., Ren, Z., Sitti, M.

IEEE Robotics and Automation Letters, 5(3):4859 - 4866, IEEE, 2020 (article)

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator
In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator

Li, M., Wang, X., Dong, B., Sitti, M.

Nature Communications, 11(1):1-10, 2020 (article)

pi

link (url) [BibTex]


Pros and Cons: Magnetic versus Optical Microrobots
Pros and Cons: Magnetic versus Optical Microrobots

Sitti, M., Wiersma, D. S.

Advanced Materials, 32(20):1906766, 2020 (article)

Abstract
Mobile microrobotics has emerged as a new robotics field within the last decade to create untethered tiny robots that can access and operate in unprecedented, dangerous, or hard‐to‐reach small spaces noninvasively toward disruptive medical, biotechnology, desktop manufacturing, environmental remediation, and other potential applications. Magnetic and optical actuation methods are the most widely used actuation methods in mobile microrobotics currently, in addition to acoustic and biological (cell‐driven) actuation approaches. The pros and cons of these actuation methods are reported here, depending on the given context. They can both enable long‐range, fast, and precise actuation of single or a large number of microrobots in diverse environments. Magnetic actuation has unique potential for medical applications of microrobots inside nontransparent tissues at high penetration depths, while optical actuation is suitable for more biotechnology, lab‐/organ‐on‐a‐chip, and desktop manufacturing types of applications with much less surface penetration depth requirements or with transparent environments. Combining both methods in new robot designs can have a strong potential of combining the pros of both methods. There is still much progress needed in both actuation methods to realize the potential disruptive applications of mobile microrobots in real‐world conditions.

pi

DOI [BibTex]

DOI [BibTex]


Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms
Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms

Dong, X., Sitti, M.

The International Journal of Robotics Research, 39(5):617-638, 2020 (article)

Abstract
Magnetically actuated mobile microrobots can access distant, enclosed, and small spaces, such as inside microfluidic channels and the human body, making them appealing for minimally invasive tasks. Despite their simplicity when scaling down, creating collective microrobots that can work closely and cooperatively, as well as reconfigure their formations for different tasks, would significantly enhance their capabilities such as manipulation of objects. However, a challenge of realizing such cooperative magnetic microrobots is to program and reconfigure their formations and collective motions with under-actuated control signals. This article presents a method of controlling 2D static and time-varying formations among collective self-repelling ferromagnetic microrobots (100 μm to 350 μm in diameter, up to 260 in number) by spatially and temporally programming an external magnetic potential energy distribution at the air–water interface or on solid surfaces. A general design method is introduced to program external magnetic potential energy using ferromagnets. A predictive model of the collective system is also presented to predict the formation and guide the design procedure. With the proposed method, versatile complex static formations are experimentally demonstrated and the programmability and scaling effects of formations are analyzed. We also demonstrate the collective mobility of these magnetic microrobots by controlling them to exhibit bio-inspired collective behaviors such as aggregation, directional motion with arbitrary swarm headings, and rotational swarming motion. Finally, the functions of the produced microrobotic swarm are demonstrated by controlling them to navigate through cluttered environments and complete reconfigurable cooperative manipulation tasks.

pi

DOI [BibTex]

DOI [BibTex]


Magnetic Resonance Imaging System--Driven Medical Robotics
Magnetic Resonance Imaging System–Driven Medical Robotics

Erin, O., Boyvat, M., Tiryaki, M. E., Phelan, M., Sitti, M.

Advanced Intelligent Systems, 2, pages: 1900110, 2020 (article)

Abstract
Magnetic resonance imaging (MRI) system–driven medical robotics is an emerging field that aims to use clinical MRI systems not only for medical imaging but also for actuation, localization, and control of medical robots. Submillimeter scale resolution of MR images for soft tissues combined with the electromagnetic gradient coil–based magnetic actuation available inside MR scanners can enable theranostic applications of medical robots for precise image‐guided minimally invasive interventions. MRI‐driven robotics typically does not introduce new MRI instrumentation for actuation but instead focuses on converting already available instrumentation for robotic purposes. To use the advantages of this technology, various medical devices such as untethered mobile magnetic robots and tethered active catheters have been designed to be powered magnetically inside MRI systems. Herein, the state‐of‐the‐art progress, challenges, and future directions of MRI‐driven medical robotic systems are reviewed.

pi

DOI [BibTex]


Selectively Controlled Magnetic Microrobots with Opposing Helices
Selectively Controlled Magnetic Microrobots with Opposing Helices

Giltinan, J., Katsamba, P., Wang, W., Lauga, E., Sitti, M.

Applied Physics Letters, 116(13):134101, 2020 (article)

pi

DOI [BibTex]

DOI [BibTex]


Bio-inspired Flexible Twisting Wings Increase Lift and Efficiency of a Flapping Wing Micro Air Vehicle
Bio-inspired Flexible Twisting Wings Increase Lift and Efficiency of a Flapping Wing Micro Air Vehicle

Colmenares, D., Kania, R., Zhang, W., Sitti, M.

arXiv preprint arXiv:2001.11586, 2020 (article)

Abstract
We investigate the effect of wing twist flexibility on lift and efficiency of a flapping-wing micro air vehicle capable of liftoff. Wings used previously were chosen to be fully rigid due to modeling and fabrication constraints. However, biological wings are highly flexible and other micro air vehicles have successfully utilized flexible wing structures for specialized tasks. The goal of our study is to determine if dynamic twisting of flexible wings can increase overall aerodynamic lift and efficiency. A flexible twisting wing design was found to increase aerodynamic efficiency by 41.3%, translational lift production by 35.3%, and the effective lift coefficient by 63.7% compared to the rigid-wing design. These results exceed the predictions of quasi-steady blade element models, indicating the need for unsteady computational fluid dynamics simulations of twisted flapping wings.

pi

[BibTex]

[BibTex]


no image
Morphology-Dependent Immunogenicity Obliges a Compromise on the Locomotion-Focused Design of Medical Microrobots

Ceren, , Hakan, , Ugur, , Anna-Maria, , Metin,

Science Robotics, 2020 (article) Accepted

pi

[BibTex]

[BibTex]


Carbon nitride-based light-driven microswimmers with intrinsic photocharging ability
Carbon nitride-based light-driven microswimmers with intrinsic photocharging ability

Sridhar, V., Podjaski, F., Kröger, J., Jiménez-Solano, A., Park, B., Lotsch, B. V., Sitti, M.

Proceedings of the National Academy of Sciences, 117(40):24748-24756, 2020 (article)

pi

link (url) [BibTex]

link (url) [BibTex]