Header logo is de


2020


no image
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach

Karimi*, A., von Kügelgen*, J., Schölkopf, B., Valera, I.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020, *equal contribution (conference) Accepted

ei

arXiv [BibTex]

2020


arXiv [BibTex]


no image
Self-Paced Deep Reinforcement Learning

Klink, P., D’Eramo, C., Peters, J., Pajarinen, J.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Probabilistic Linear Solvers for Machine Learning

Wenger, J., Hennig, P.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Barking up the right tree: an approach to search over molecule synthesis DAGs

Bradshaw, J., Paige, B., Kusner, M., Segler, M., Hernández-Lobato, J. M.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Learning Kernel Tests Without Data Splitting

Kübler, J., Jitkrittum, W., Schölkopf, B., Muandet, K.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Dual Instrumental Variable Regression

Muandet, K., Mehrjou, A., Lee, S. K., Raj, A.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings

Park, J., Muandet, K.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
MATE: Plugging in Model Awareness to Task Embedding for Meta Learning

Chen, X., Wang, Z., Tang, S., Muandet, K.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Object-Centric Learning with Slot Attention

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit, J., Dosovitskiy, A., Kipf, T.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Relative gradient optimization of the Jacobian term in unsupervised deep learning

Gresele, L., Fissore, G., Javaloy, A., Schölkopf, B., Hyvarinen, A.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Causal analysis of Covid-19 Spread in Germany

Mastakouri, A., Schölkopf, B.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Modeling Shared responses in Neuroimaging Studies through MultiView ICA

Richard, H., Gresele, L., Hyvarinen, A., Thirion, B., Gramfort, A., Ablin, P.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Stochastic Stein Discrepancies

Gorham, J., Raj, A., Mackey, L.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining

Tripp, A., Daxberger, E., Hernández-Lobato, J. M.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


Virtual Point Control for Step-down Perturbations and Downhill Slopes in Bipedal Running
Virtual Point Control for Step-down Perturbations and Downhill Slopes in Bipedal Running

Drama, Ö., Badri-Spröwitz, A.

Frontiers in Bioengineering Biotechnology, Bionics and Biomimetics, November 2020 (article) Accepted

Abstract
Bipedal running is a difficult task to realize in robots, since the trunk is underactuated and control is limited by intermittent ground contacts. Stabilizing the trunk becomes even more challenging if the terrain is uneven and causes perturbations. One bio-inspired method to achieve postural stability is the virtual point (VP) control, which is able to generate natural motion. However, so far it has only been studied for level running. In this work, we investigate whether the VP control method can accommodate single step-down perturbations and downhill terrains. We provide guidelines on the model and controller parameterizations for handling varying terrain conditions. Next, we show that the VP method is able to stabilize single step-down perturbations up to 40 cm, and downhill grades up to 20-10° corresponding to running speeds of 2-5 m/s. Our results show that the VP approach leads to asymmetrically bounded ground reaction forces for downhill running, unlike the commonly-used symmetric friction cone constraints. Overall, VP control is a promising candidate for terrain-adaptive running control of bipedal robots.

dlg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Grasping Field: Learning Implicit Representations for Human Grasps
Grasping Field: Learning Implicit Representations for Human Grasps

(Best Paper Award)

Karunratanakul, K., Yang, J., Zhang, Y., Black, M., Muandet, K., Tang, S.

In International Conference on 3D Vision (3DV), November 2020 (inproceedings)

Abstract
Robotic grasping of house-hold objects has made remarkable progress in recent years. Yet, human grasps are still difficult to synthesize realistically. There are several key reasons: (1) the human hand has many degrees of freedom (more than robotic manipulators); (2) the synthesized hand should conform to the surface of the object; and (3) it should interact with the object in a semantically and physically plausible manner. To make progress in this direction, we draw inspiration from the recent progress on learning-based implicit representations for 3D object reconstruction. Specifically, we propose an expressive representation for human grasp modelling that is efficient and easy to integrate with deep neural networks. Our insight is that every point in a three-dimensional space can be characterized by the signed distances to the surface of the hand and the object, respectively. Consequently, the hand, the object, and the contact area can be represented by implicit surfaces in a common space, in which the proximity between the hand and the object can be modelled explicitly. We name this 3D to 2D mapping as Grasping Field, parameterize it with a deep neural network, and learn it from data. We demonstrate that the proposed grasping field is an effective and expressive representation for human grasp generation. Specifically, our generative model is able to synthesize high-quality human grasps, given only on a 3D object point cloud. The extensive experiments demonstrate that our generative model compares favorably with a strong baseline and approaches the level of natural human grasps. Furthermore, based on the grasping field representation, we propose a deep network for the challenging task of 3D hand-object interaction reconstruction from a single RGB image. Our method improves the physical plausibility of the hand-object contact reconstruction and achieves comparable performance for 3D hand reconstruction compared to state-of-the-art methods. Our model and code are available for research purpose at https://github.com/korrawe/grasping_field.

ei ps

pdf arXiv code [BibTex]


Postural stability in human running with step-down perturbations: an experimental and numerical study
Postural stability in human running with step-down perturbations: an experimental and numerical study

Drama, Ö., Vielemeyer, J., Badri-Spröwitz, A., Müller, R.

Royal Society Open Science, 7, November 2020 (article)

Abstract
Postural stability is one of the most crucial elements in bipedal locomotion. Bipeds are dynamically unstable and need to maintain their trunk upright against the rotations induced by the ground reaction forces (GRFs), especially when running. Gait studies report that the GRF vectors focus around a virtual point above the center of mass (VPA), while the trunk moves forward in pitch axis during the stance phase of human running. However, a recent simulation study suggests that a virtual point below the center of mass (VPB) might be present in human running, since a VPA yields backward trunk rotation during the stance phase. In this work, we perform a gait analysis to investigate the existence and location of the VP in human running at 5 m s−1, and support our findings numerically using the spring-loaded inverted pendulum model with a trunk (TSLIP). We extend our analysis to include perturbations in terrain height (visible and camouflaged), and investigate the response of the VP mechanism to step-down perturbations both experimentally and numerically. Our experimental results show that the human running gait displays a VPB of ≈ −30 cm and a forward trunk motion during the stance phase. The camouflaged step-down perturbations affect the location of the VPB. Our simulation results suggest that the VPB is able to encounter the step-down perturbations and bring the system back to its initial equilibrium state.

dlg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
MYND: Unsupervised Evaluation of Novel BCI Control Strategies on Consumer Hardware

Hohmann, M. R., Konieczny, L., Hackl, M., Wirth, B., Zaman, T., Enficiaud, R., Grosse-Wentrup, M., Schölkopf, B.

Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (UIST), October 2020 (conference) Accepted

ei

arXiv DOI [BibTex]

arXiv DOI [BibTex]


A little damping goes a long way: a simulation study of how damping influences task-level stability in running
A little damping goes a long way: a simulation study of how damping influences task-level stability in running

Heim, S., Millard, M., Mouel, C. L., Badri-Spröwitz, A.

Biology Letters, 16(9), September 2020 (article)

Abstract
It is currently unclear if damping plays a functional role in legged locomotion, and simple models often do not include damping terms. We present a new model with a damping term that is isolated from other parameters: that is, the damping term can be adjusted without retuning other model parameters for nominal motion. We systematically compare how increased damping affects stability in the face of unexpected ground-height perturbations. Unlike most studies, we focus on task-level stability: instead of observing whether trajectories converge towards a nominal limit-cycle, we quantify the ability to avoid falls using a recently developed mathematical measure. This measure allows trajectories to be compared quantitatively instead of only being separated into a binary classification of ‘stable' or ‘unstable'. Our simulation study shows that increased damping contributes significantly to task-level stability; however, this benefit quickly plateaus after only a small amount of damping. These results suggest that the low intrinsic damping values observed experimentally may have stability benefits and are not simply minimized for energetic reasons. All Python code and data needed to generate our results are available open source.

dlg ics

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Effective Viscous Damping Enables Morphological Computation in Legged Locomotion
Effective Viscous Damping Enables Morphological Computation in Legged Locomotion

Mo, A., Izzi, F., Haeufle, D. F. B., Badri-Spröwitz, A.

Frontiers Robots and Ai, 7:110, August 2020 (article)

Abstract
Muscle models and animal observations suggest that physical damping is beneficial for stabilization. Still, only a few implementations of mechanical damping exist in compliant robotic legged locomotion. It remains unclear how physical damping can be exploited for locomotion tasks, while its advantages as sensor-free, adaptive force- and negative work-producing actuators are promising. In a simplified numerical leg model, we studied the energy dissipation from viscous and Coulomb damping during vertical drops with ground-level perturbations. A parallel spring-damper is engaged between touch-down and mid-stance, and its damper auto-disengages during mid-stance and takeoff. Our simulations indicate that an adjustable and viscous damper is desired. In hardware we explored effective viscous damping and adjustability and quantified the dissipated energy. We tested two mechanical, leg-mounted damping mechanisms; a commercial hydraulic damper, and a custom-made pneumatic damper. The pneumatic damper exploits a rolling diaphragm with an adjustable orifice, minimizing Coulomb damping effects while permitting adjustable resistance. Experimental results show that the leg-mounted, hydraulic damper exhibits the most effective viscous damping. Adjusting the orifice setting did not result in substantial changes of dissipated energy per drop, unlike adjusting damping parameters in the numerical model. Consequently, we also emphasize the importance of characterizing physical dampers during real legged impacts to evaluate their effectiveness for compliant legged locomotion.

dlg

Youtube link (url) DOI [BibTex]

Youtube link (url) DOI [BibTex]


no image
Model-Agnostic Counterfactual Explanations for Consequential Decisions

Karimi, A., Barthe, G., Balle, B., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 895-905, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei plg

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
More Powerful Selective Kernel Tests for Feature Selection

Lim, J. N., Yamada, M., Jitkrittum, W., Terada, Y., Matsui, S., Shimodaira, H.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 820-830, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Bayesian Online Prediction of Change Points

Agudelo-España, D., Gomez-Gonzalez, S., Bauer, S., Schölkopf, B., Peters, J.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 320-329, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Semi-supervised learning, causality, and the conditional cluster assumption

von Kügelgen, J., Mey, A., Loog, M., Schölkopf, B.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI) , 124, pages: 1-10, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Kernel Conditional Moment Test via Maximum Moment Restriction

Muandet, K., Jitkrittum, W., Kübler, J. M.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 41-50, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
On the design of consequential ranking algorithms

Tabibian, B., Gómez, V., De, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 171-180, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Importance Sampling via Local Sensitivity

Raj, A., Musco, C., Mackey, L.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 3099-3109, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Continuous-time Perspective for Modeling Acceleration in Riemannian Optimization

F Alimisis, F., Orvieto, A., Becigneul, G., Lucchi, A.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 1297-1307, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Fair Decisions Despite Imperfect Predictions

Kilbertus, N., Gomez Rodriguez, M., Schölkopf, B., Muandet, K., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 277-287, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei plg

link (url) [BibTex]

link (url) [BibTex]


no image
Integrals over Gaussians under Linear Domain Constraints

Gessner, A., Kanjilal, O., Hennig, P.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 2764-2774, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Modular Block-diagonal Curvature Approximations for Feedforward Architectures

Dangel, F., Harmeling, S., Hennig, P.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 799-808, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Testing Goodness of Fit of Conditional Density Models with Kernels

Jitkrittum, W., Kanagawa, H., Schölkopf, B.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 221-230, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization

Negiar, G., Dresdner, G., Tsai, A. Y., El Ghaoui, L., Locatello, F., Freund, R. M., Pedregosa, F.

37th International Conference on Machine Learning (ICML), pages: 296-305, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Variational Autoencoders with Riemannian Brownian Motion Priors

Kalatzis, D., Eklund, D., Arvanitidis, G., Hauberg, S.

37th International Conference on Machine Learning (ICML), pages: 6789-6799, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Variational Bayes in Private Settings (VIPS) (Extended Abstract)

Foulds, J. R., Park, M., Chaudhuri, K., Welling, M.

Proceedings of the 29th International Joint Conference on Artificial Intelligence, (IJCAI-PRICAI), pages: 5050-5054, (Editors: Christian Bessiere), International Joint Conferences on Artificial Intelligence Organization, July 2020, Journal track (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Weakly-Supervised Disentanglement Without Compromises

Locatello, F., Poole, B., Rätsch, G., Schölkopf, B., Bachem, O., Tschannen, M.

37th International Conference on Machine Learning (ICML), pages: 7753-7764, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

Kristiadi, A., Hein, M., Hennig, P.

37th International Conference on Machine Learning (ICML), pages: 1226-1236, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Constant Curvature Graph Convolutional Networks

Bachmann*, G., Becigneul*, G., Ganea, O.

37th International Conference on Machine Learning (ICML), pages: 9118-9128, July 2020, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Differentiable Likelihoods for Fast Inversion of ‘Likelihood-Free’ Dynamical Systems

Kersting, H., Krämer, N., Schiegg, M., Daniel, C., Tiemann, M., Hennig, P.

37th International Conference on Machine Learning (ICML), pages: 2655-2665, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Kernel Conditional Density Operators

Schuster, I., Mollenhauer, M., Klus, S., Muandet, K.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 993-1004, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, June 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Kernel Mean Embedding Approach to Reducing Conservativeness in Stochastic Programming and Control

Zhu, J., Diehl, M., Schölkopf, B.

2nd Annual Conference on Learning for Dynamics and Control (L4DC), 120, pages: 915-923, Proceedings of Machine Learning Research, (Editors: Alexandre M. Bayen and Ali Jadbabaie and George Pappas and Pablo A. Parrilo and Benjamin Recht and Claire Tomlin and Melanie Zeilinger), PMLR, June 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Phenomenal Causality and Sensory Realism

Meding, K., Bruijns, S. A., Schölkopf, B., Berens, P., Wichmann, F. A.

i-Perception, 11(3):1-16, June 2020 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Deep learning for the parameter estimation of tight-binding Hamiltonians

Cacioppo, A.

University of Roma, La Sapienza, Italy, May 2020 (mastersthesis)

ei

[BibTex]

[BibTex]


FootTile: a Rugged Foot Sensor for Force and Center of Pressure Sensing in Soft Terrain
FootTile: a Rugged Foot Sensor for Force and Center of Pressure Sensing in Soft Terrain

Felix Ruppert, , Badri-Spröwitz, A.

In Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, International Conference on Robotics and Automation, May 2020 (inproceedings) Accepted

Abstract
In this paper, we present FootTile, a foot sensor for reaction force and center of pressure sensing in challenging terrain. We compare our sensor design to standard biomechanical devices, force plates and pressure plates. We show that FootTile can accurately estimate force and pressure distribution during legged locomotion. FootTile weighs 0.9g, has a sampling rate of 330 Hz, a footprint of 10×10 mm and can easily be adapted in sensor range to the required load case. In three experiments, we validate: first, the performance of the individual sensor, second an array of FootTiles for center of pressure sensing and third the ground reaction force estimation during locomotion in granular substrate. We then go on to show the accurate sensing capabilities of the waterproof sensor in liquid mud, as a showcase for real world rough terrain use.

dlg

Youtube1 Youtube2 Presentation link (url) [BibTex]

Youtube1 Youtube2 Presentation link (url) [BibTex]


VP above or below? A new perspective on the story of the virtual point
VP above or below? A new perspective on the story of the virtual point

Drama, Ö., Badri-Spröwitz, A.

Dynamic Walking, May 2020 (poster)

Abstract
The spring inverted pendulum model with an extended trunk (TSLIP) is widely used to investigate the postural stability in bipedal locomotion [1, 2]. The challenge of the model is to define a hip torque that generates feasible gait patterns while stabilizing the floating trunk. The virtual point (VP) method is proposed as a simplified solution, where the hip torque is coupled to the passive compliant leg force via a virtual point. This geometric coupling is based on the assumption that the instantaneous ground reaction forces of the stance phase (GRF) intersect at a single virtual point.

dlg

Poster Abstract link (url) [BibTex]

Poster Abstract link (url) [BibTex]


Viscous Damping in Legged Locomotion
Viscous Damping in Legged Locomotion

Mo, A., Izzi, F., Haeufle, D. F. B., Badri-Spröwitz, A.

Dynamic Walking, May 2020 (poster)

Abstract
Damping likely plays an essential role in legged animal locomotion, but remains an insufficiently understood mechanism. Intrinsic damping muscle forces can potentially add to the joint torque output during unexpected impacts, stabilise movements, convert the system’s energy, and reject unexpected perturbations.

dlg

Abstract Poster link (url) [BibTex]

Abstract Poster link (url) [BibTex]