Header logo is de


2019


no image
Deep Neural Network Approach in Electrical Impedance Tomography-Based Real-Time Soft Tactile Sensor

Park, H., Lee, H., Park, K., Mo, S., Kim, J.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 7447-7452, Macau, China, November 2019 (inproceedings)

Abstract
Recently, a whole-body tactile sensing have emerged in robotics for safe human-robot interaction. A key issue in the whole-body tactile sensing is ensuring large-area manufacturability and high durability. To fulfill these requirements, a reconstruction method called electrical impedance tomography (EIT) was adopted in large-area tactile sensing. This method maps voltage measurements to conductivity distribution using only a few number of measurement electrodes. A common approach for the mapping is using a linearized model derived from the Maxwell's equation. This linearized model shows fast computation time and moderate robustness against measurement noise but reconstruction accuracy is limited. In this paper, we propose a novel nonlinear EIT algorithm through Deep Neural Network (DNN) approach to improve the reconstruction accuracy of EIT-based tactile sensors. The neural network architecture with rectified linear unit (ReLU) function ensured extremely low computational time (0.002 seconds) and nonlinear network structure which provides superior measurement accuracy. The DNN model was trained with dataset synthesized in simulation environment. To achieve the robustness against measurement noise, the training proceeded with additive Gaussian noise that estimated through actual measurement noise. For real sensor application, the trained DNN model was transferred to a conductive fabric-based soft tactile sensor. For validation, the reconstruction error and noise robustness were mainly compared using conventional linearized model and proposed approach in simulation environment. As a demonstration, the tactile sensor equipped with the trained DNN model is presented for a contact force estimation.

hi

DOI [BibTex]

2019


DOI [BibTex]


Objective and Subjective Assessment of Algorithms for Reducing Three-Axis Vibrations to One-Axis Vibrations
Objective and Subjective Assessment of Algorithms for Reducing Three-Axis Vibrations to One-Axis Vibrations

Park, G., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference, pages: 467-472, July 2019 (inproceedings)

Abstract
A typical approach to creating realistic vibrotactile feedback is reducing 3D vibrations recorded by an accelerometer to 1D signals that can be played back on a haptic actuator, but some of the information is often lost in this dimensional reduction process. This paper describes seven representative algorithms and proposes four metrics based on the spectral match, the temporal match, and the average value and the variability of them across 3D rotations. These four performance metrics were applied to four texture recordings, and the method utilizing the discrete fourier transform (DFT) was found to be the best regardless of the sensing axis. We also recruited 16 participants to assess the perceptual similarity achieved by each algorithm in real time. We found the four metrics correlated well with the subjectively rated similarities for the six dimensional reduction algorithms, with the exception of taking the 3D vector magnitude, which was perceived to be good despite its low spectral and temporal match metrics.

hi

DOI [BibTex]

DOI [BibTex]


Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces
Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces

Vardar, Y., Wallraven, C., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 395-400, Tokyo, Japan, July 2019 (inproceedings)

Abstract
Both vision and touch contribute to the perception of real surfaces. Although there have been many studies on the individual contributions of each sense, it is still unclear how each modality’s information is processed and integrated. To fill this gap, we investigated the similarity of visual and haptic perceptual spaces, as well as how well they each correlate with fingertip interaction metrics. Twenty participants interacted with ten different surfaces from the Penn Haptic Texture Toolkit by either looking at or touching them and judged their similarity in pairs. By analyzing the resulting similarity ratings using multi-dimensional scaling (MDS), we found that surfaces are similarly organized within the three-dimensional perceptual spaces of both modalities. Also, between-participant correlations were significantly higher in the haptic condition. In a separate experiment, we obtained the contact forces and accelerations acting on one finger interacting with each surface in a controlled way. We analyzed the collected fingertip interaction data in both the time and frequency domains. Our results suggest that the three perceptual dimensions for each modality can be represented by roughness/smoothness, hardness/softness, and friction, and that these dimensions can be estimated by surface vibration power, tap spectral centroid, and kinetic friction coefficient, respectively.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Collective Formation and Cooperative Function of a Magnetic Microrobotic Swarm

Xiaoguang Dong, M. S.

IEEE, Robotics: Science and Systems, June 2019 (conference)

Abstract
Untethered magnetically actuated microrobots can access distant, enclosed and small spaces, such as inside microfluidic channels and the human body, making them appealing for minimal invasive tasks. Despite the simplicity of individual magnetic microrobots, a collective of these microrobots that can work closely and cooperatively would significantly enhance their capabilities. However, a challenge of realizing such collective magnetic microrobots is to coordinate their formations and motions with underactuated control signals. Here, we report a method that allows collective magnetic microrobots working closely and cooperatively by controlling their two-dimensional (2D) formations and collective motions in a programmable manner. The actively designed formation and intrinsic adjustable compliance within the group allow bio-inspired collective behaviors, such as navigating through cluttered environments and reconfigurable cooperative manipulation ability. These collective magnetic microrobots thus could enable potential applications in programmable self-assembly, modular robotics, swarm robotics, and biomedicine.

pi

Collective Formation and Cooperative Function of a Magnetic Microrobotic Swarm DOI [BibTex]


A Magnetically-Actuated Untethered Jellyfish-Inspired Soft Milliswimmer
A Magnetically-Actuated Untethered Jellyfish-Inspired Soft Milliswimmer

(Best Paper Award)

Ziyu Ren, T. W., Hu, W.

RSS 2019: Robotics: Science and Systems Conference, June 2019 (conference)

pi

[BibTex]

[BibTex]


Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design
Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design

Seifi, H., Fazlollahi, F., Oppermann, M., Sastrillo, J. A., Ip, J., Agrawal, A., Park, G., Kuchenbecker, K. J., MacLean, K. E.

In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI), Glasgow, Scotland, May 2019 (inproceedings)

Abstract
Creating haptic experiences often entails inventing, modifying, or selecting specialized hardware. However, experience designers are rarely engineers, and 30 years of haptic inventions are buried in a fragmented literature that describes devices mechanically rather than by potential purpose. We conceived of Haptipedia to unlock this trove of examples: Haptipedia presents a device corpus for exploration through metadata that matter to both device and experience designers. It is a taxonomy of device attributes that go beyond physical description to capture potential utility, applied to a growing database of 105 grounded force-feedback devices, and accessed through a public visualization that links utility to morphology. Haptipedia's design was driven by both systematic review of the haptic device literature and rich input from diverse haptic designers. We describe Haptipedia's reception (including hopes it will redefine device reporting standards) and our plans for its sustainability through community participation.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Internal Array Electrodes Improve the Spatial Resolution of Soft Tactile Sensors Based on Electrical Resistance Tomography

Lee, H., Park, K., Kim, J., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5411-5417, Montreal, Canada, May 2019, Hyosang Lee and Kyungseo Park contributed equally to this publication (inproceedings)

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
A Clustering Approach to Categorizing 7 Degree-of-Freedom Arm Motions during Activities of Daily Living

Gloumakov, Y., Spiers, A. J., Dollar, A. M.

In Proceedings of the International Conference on Robotics and Automation (ICRA), pages: 7214-7220, Montreal, Canada, May 2019 (inproceedings)

Abstract
In this paper we present a novel method of categorizing naturalistic human arm motions during activities of daily living using clustering techniques. While many current approaches attempt to define all arm motions using heuristic interpretation, or a combination of several abstract motion primitives, our unsupervised approach generates a hierarchical description of natural human motion with well recognized groups. Reliable recommendation of a subset of motions for task achievement is beneficial to various fields, such as robotic and semi-autonomous prosthetic device applications. The proposed method makes use of well-known techniques such as dynamic time warping (DTW) to obtain a divergence measure between motion segments, DTW barycenter averaging (DBA) to get a motion average, and Ward's distance criterion to build the hierarchical tree. The clusters that emerge summarize the variety of recorded motions into the following general tasks: reach-to-front, transfer-box, drinking from vessel, on-table motion, turning a key or door knob, and reach-to-back pocket. The clustering methodology is justified by comparing against an alternative measure of divergence using Bezier coefficients and K-medoids clustering.

hi

DOI [BibTex]

DOI [BibTex]


Improving Haptic Adjective Recognition with Unsupervised Feature Learning
Improving Haptic Adjective Recognition with Unsupervised Feature Learning

Richardson, B. A., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 3804-3810, Montreal, Canada, May 2019 (inproceedings)

Abstract
Humans can form an impression of how a new object feels simply by touching its surfaces with the densely innervated skin of the fingertips. Many haptics researchers have recently been working to endow robots with similar levels of haptic intelligence, but these efforts almost always employ hand-crafted features, which are brittle, and concrete tasks, such as object recognition. We applied unsupervised feature learning methods, specifically K-SVD and Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP), to rich multi-modal haptic data from a diverse dataset. We then tested the learned features on 19 more abstract binary classification tasks that center on haptic adjectives such as smooth and squishy. The learned features proved superior to traditional hand-crafted features by a large margin, almost doubling the average F1 score across all adjectives. Additionally, particular exploratory procedures (EPs) and sensor channels were found to support perception of certain haptic adjectives, underlining the need for diverse interactions and multi-modal haptic data.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Elastic modulus affects adhesive strength of gecko-inspired synthetics in variable temperature and humidity

Mitchell, CT, Drotlef, D, Dayan, CB, Sitti, M, Stark, AY

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E372-E372, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, March 2019 (inproceedings)

pi

[BibTex]

[BibTex]


Wide Range-Sensitive, Bending-Insensitive Pressure Detection and Application to Wearable Healthcare Device
Wide Range-Sensitive, Bending-Insensitive Pressure Detection and Application to Wearable Healthcare Device

Kim, S., Amjadi, M., Lee, T., Jeong, Y., Kwon, D., Kim, M. S., Kim, K., Kim, T., Oh, Y. S., Park, I.

In 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2019 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Gecko-inspired composite microfibers for reversible adhesion on smooth and rough surfaces

Drotlef, D., Dayan, C., Sitti, M.

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E58-E58, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, 2019 (inproceedings)

pi

[BibTex]

[BibTex]