Header logo is de


2019


no image
Perception of temporal dependencies in autoregressive motion

Meding, K., Schölkopf, B., Wichmann, F. A.

European Conference on Visual Perception (ECVP), 2019 (poster)

ei

[BibTex]

2019


[BibTex]


no image
Novel X-ray lenses for direct and coherent imaging

Sanli, U. T.

Universität Stuttgart, Stuttgart, 2019 (phdthesis)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Multifarious Transit Gates for Programmable Delivery of Bio‐functionalized Matters
Multifarious Transit Gates for Programmable Delivery of Bio‐functionalized Matters

Hu, X., Torati, S. R., Kim, H., Yoon, J., Lim, B., Kim, K., Sitti, M., Kim, C.

Small, Wiley Online Library, 2019 (article)

pi

[BibTex]

[BibTex]


Multi-functional soft-bodied jellyfish-like swimming
Multi-functional soft-bodied jellyfish-like swimming

Ren, Z., Hu, W., Dong, X., Sitti, M.

Nature communications, 10, 2019 (article)

pi

[BibTex]


no image
Welcome to Progress in Biomedical Engineering

Sitti, M.

Progress in Biomedical Engineering, 1, IOP Publishing, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Scaling of intrinsic domain wall magnetoresistance with confinement in electromigrated nanocontacts

Reeve, R. M., Loescher, A., Kazemi, H., Dupé, B., Mawass, M., Winkler, T., Schönke, D., Miao, J., Litzius, K., Sedlmayr, N., Schneider, I., Sinova, J., Eggert, S., Kläui, M.

{Physical Review B}, 99(21), American Physical Society, Woodbury, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


{Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths}
Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths

Dieterle, G., Förster, J., Stoll, H., Semisalova, A. S., Finizio, S., Gangwar, A., Weigand, M., Noske, M., Fähnle, M., Bykova, I., Gräfe, J., Bozhko, D. A., Musiienko-Shmarova, H. Y., Tiberkevich, V., Slavin, A. N., Back, C. H., Raabe, J., Schütz, G., Wintz, S.

{Physical Review Letters}, 122(11), American Physical Society, Woodbury, N.Y., 2019 (article)

Abstract
In the emerging field of magnonics, spin waves are foreseen as signal carriers for future spintronic information processing and communication devices, owing to both the very low power losses and a high device miniaturization potential predicted for short-wavelength spin waves. Yet, the efficient excitation and controlled propagation of nanoscale spin waves remains a severe challenge. Here, we report the observation of high-amplitude, ultrashort dipole-exchange spin waves (down to 80 nm wavelength at 10 GHz frequency) in a ferromagnetic single layer system, coherently excited by the driven dynamics of a spin vortex core. We used time-resolved x-ray microscopy to directly image such propagating spin waves and their excitation over a wide range of frequencies. By further analysis, we found that these waves exhibit a heterosymmetric mode profile, involving regions with anti-Larmor precession sense and purely linear magnetic oscillation. In particular, this mode profile consists of dynamic vortices with laterally alternating helicity, leading to a partial magnetic flux closure over the film thickness, which is explained by a strong and unexpected mode hybridization. This spin-wave phenomenon observed is a general effect inherent to the dynamics of sufficiently thick ferromagnetic single layer films, independent of the specific excitation method employed.

mms

DOI [BibTex]

DOI [BibTex]


Reprogrammability and Scalability of Magnonic Fibonacci Quasicrystals
Reprogrammability and Scalability of Magnonic Fibonacci Quasicrystals

Lisiecki, F., Rychły, J., Kuświk, P., Głowiński, H., Kłos, J. W., Groß, F., Bykova, I., Weigand, M., Zelent, M., Goering, E. J., Schütz, G., Gubbiotti, G., Krawczyk, M., Stobiecki, F., Dubowik, J., Gräfe, J.

Physical Review Applied, 11, pages: 054003, 2019 (article)

Abstract
Magnonic crystals are systems that can be used to design and tune the dynamic properties of magnetization. Here, we focus on one-dimensional Fibonacci magnonic quasicrystals. We confirm the existence of collective spin waves propagating through the structure as well as dispersionless modes; the reprogammability of the resonance frequencies, dependent on the magnetization order; and dynamic spin-wave interactions. With the fundamental understanding of these properties, we lay a foundation for the scalable and advanced design of spin-wave band structures for spintronic, microwave, and magnonic applications.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Drag Force for Asymmetrically Grafted Colloids in Polymer Solutions

Werner, M., Malgaretti, P., Maciolek, A.

Frontiers in Physics, 7, Frontiers Media, Lausanne, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Feeling Your Neighbors across the Walls: How Interpore Ionic Interactions Affect Capacitive Energy Storage

Kondrat, S., Vasilyev, O., Kornyshev, A. A.

The Journal of Physical Chemistry Letters, 10(16):4523-4527, American Chemical Society, Washington, DC, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Active Janus colloids at chemically structured surfaces

Uspal, W. E., Popescu, M. N., Dietrich, S., Tasinkevych, M.

The Journal of Chemical Physics, 150(20), American Institute of Physics, Woodbury, N.Y., 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Illumination-induced motion of a Janus nanoparticle in binary solvents

Araki, T., Maciolek, A.

Soft Matter, 15(26):5243-5254, Royal Society of Chemistry, Cambridge, UK, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Transient response of an electrolyte to a thermal quench

Janssen, M., Bier, M.

Physical Review E, 99(4), American Physical Society, Melville, NY, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise

Pfister*, N., Weichwald*, S., Bühlmann, P., Schölkopf, B.

Journal of Machine Learning Research, 20(147):1-50, 2019, *equal contribution (article)

ei

ArXiv Code Project page PDF link (url) Project Page Project Page [BibTex]

ArXiv Code Project page PDF link (url) Project Page Project Page [BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 116(10):3988-3993, National Academy of Sciences, 2019 (article)

ei

link (url) DOI Project Page Project Page [BibTex]

link (url) DOI Project Page Project Page [BibTex]


no image
Entropic Regularization of Markov Decision Processes

Belousov, B., Peters, J.

Entropy, 21(7):674, 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


The near and far of a pair of magnetic capillary disks
The near and far of a pair of magnetic capillary disks

Koens, L., Wang, W., Sitti, M., Lauga, E.

Soft Matter, 2019 (article)

pi

DOI [BibTex]

DOI [BibTex]


no image
Even Delta-Matroids and the Complexity of Planar Boolean CSPs

Kazda, A., Kolmogorov, V., Rolinek, M.

ACM Transactions on Algorithms, 15(2, Special Issue on Soda'17 and Regular Papers):Article Number 22, 2019 (article)

al

DOI [BibTex]

DOI [BibTex]


no image
Machine Learning for Haptics: Inferring Multi-Contact Stimulation From Sparse Sensor Configuration

Sun, H., Martius, G.

Frontiers in Neurorobotics, 13, pages: 51, 2019 (article)

Abstract
Robust haptic sensation systems are essential for obtaining dexterous robots. Currently, we have solutions for small surface areas such as fingers, but affordable and robust techniques for covering large areas of an arbitrary 3D surface are still missing. Here, we introduce a general machine learning framework to infer multi-contact haptic forces on a 3D robot’s limb surface from internal deformation measured by only a few physical sensors. The general idea of this framework is to predict first the whole surface deformation pattern from the sparsely placed sensors and then to infer number, locations and force magnitudes of unknown contact points. We show how this can be done even if training data can only be obtained for single-contact points using transfer learning at the example of a modified limb of the Poppy robot. With only 10 strain-gauge sensors we obtain a high accuracy also for multiple-contact points. The method can be applied to arbitrarily shaped surfaces and physical sensor types, as long as training data can be obtained.

al

link (url) DOI [BibTex]


no image
Reconfigurable nanoscale spin wave majority gate with frequency-division multiplexing

Talmelli, G., Devolder, T., Träger, N., Förster, J., Wintz, S., Weigand, M., Stoll, H., Heyns, M., Schütz, G., Radu, I., Gräfe, J., Ciubotaru, F., Adelmann, C.

2019 (misc)

Abstract
Spin waves are excitations in ferromagnetic media that have been proposed as information carriers in spintronic devices with potentially much lower operation power than conventional charge-based electronics. The wave nature of spin waves can be exploited to design majority gates by coding information in their phase and using interference for computation. However, a scalable spin wave majority gate design that can be co-integrated alongside conventional Si-based electronics is still lacking. Here, we demonstrate a reconfigurable nanoscale inline spin wave majority gate with ultrasmall footprint, frequency-division multiplexing, and fan-out. Time-resolved imaging of the magnetisation dynamics by scanning transmission x-ray microscopy reveals the operation mode of the device and validates the full logic majority truth table. All-electrical spin wave spectroscopy further demonstrates spin wave majority gates with sub-micron dimensions, sub-micron spin wave wavelengths, and reconfigurable input and output ports. We also show that interference-based computation allows for frequency-division multiplexing as well as the computation of different logic functions in the same device. Such devices can thus form the foundation of a future spin-wave-based superscalar vector computing platform.

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Prototyping Micro- and Nano-Optics with Focused Ion Beam Lithography

Keskinbora, K.

SL48, pages: 46, SPIE.Spotlight, SPIE Press, Bellingham, WA, 2019 (book)

mms

DOI [BibTex]

DOI [BibTex]


no image
Structural and magnetic properties of FePt-Tb alloy thin films

Schmidt, N. Y., Laureti, S., Radu, F., Ryll, H., Luo, C., d\textquotesingleAcapito, F., Tripathi, S., Goering, E., Weller, D., Albrecht, M.

{Physical Review B}, 100(6), American Physical Society, Woodbury, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


Mechanics of a pressure-controlled adhesive membrane for soft robotic gripping on curved surfaces
Mechanics of a pressure-controlled adhesive membrane for soft robotic gripping on curved surfaces

Song, S., Drotlef, D., Paik, J., Majidi, C., Sitti, M.

Extreme Mechanics Letters, Elsevier, 2019 (article)

pi

[BibTex]


Multifunctional and biodegradable self-propelled protein motors
Multifunctional and biodegradable self-propelled protein motors

Pena-Francesch, A., Giltinan, J., Sitti, M.

Nature communications, 10, Nature Publishing Group, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Tunable perpendicular exchange bias in oxide heterostructures

Kim, G., Khaydukov, Y., Bluschke, M., Suyolcu, Y. E., Christiani, G., Son, K., Dietl, C., Keller, T., Weschke, E., van Aken, P. A., Logvenov, G., Keimer, B.

{Physical Review Materials}, 3(8), American Physical Society, College Park, MD, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Quantification of tumor heterogeneity using PET/MRI and machine learning

Katiyar, P.

Eberhard Karls Universität Tübingen, Germany, 2019 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Quantum mean embedding of probability distributions

Kübler, J. M., Muandet, K., Schölkopf, B.

Physical Review Research, 1(3):033159, American Physical Society, 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design
Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design

Singh, A. V., Laux, P., Luch, A., Sudrik, C., Wiehr, S., Wild, A., Santamauro, G., Bill, J., Sitti, M.

Toxicology Mechanisms and Methods, 2019 (article)

pi

[BibTex]

[BibTex]


The Virtual Caliper: Rapid Creation of Metrically Accurate Avatars from {3D} Measurements
The Virtual Caliper: Rapid Creation of Metrically Accurate Avatars from 3D Measurements

Pujades, S., Mohler, B., Thaler, A., Tesch, J., Mahmood, N., Hesse, N., Bülthoff, H. H., Black, M. J.

IEEE Transactions on Visualization and Computer Graphics, 25, pages: 1887,1897, IEEE, 2019 (article)

Abstract
Creating metrically accurate avatars is important for many applications such as virtual clothing try-on, ergonomics, medicine, immersive social media, telepresence, and gaming. Creating avatars that precisely represent a particular individual is challenging however, due to the need for expensive 3D scanners, privacy issues with photographs or videos, and difficulty in making accurate tailoring measurements. We overcome these challenges by creating “The Virtual Caliper”, which uses VR game controllers to make simple measurements. First, we establish what body measurements users can reliably make on their own body. We find several distance measurements to be good candidates and then verify that these are linearly related to 3D body shape as represented by the SMPL body model. The Virtual Caliper enables novice users to accurately measure themselves and create an avatar with their own body shape. We evaluate the metric accuracy relative to ground truth 3D body scan data, compare the method quantitatively to other avatar creation tools, and perform extensive perceptual studies. We also provide a software application to the community that enables novices to rapidly create avatars in fewer than five minutes. Not only is our approach more rapid than existing methods, it exports a metrically accurate 3D avatar model that is rigged and skinned.

ps

Project Page IEEE Open Access IEEE Open Access PDF DOI [BibTex]

Project Page IEEE Open Access IEEE Open Access PDF DOI [BibTex]


no image
Doing more with less: Meta-reasoning and meta-learning in humans and machines

Griffiths, T., Callaway, F., Chang, M., Grant, E., Krueger, P. M., Lieder, F.

Current Opinion in Behavioral Sciences, 2019 (article)

re

DOI [BibTex]

DOI [BibTex]


Graphene oxide synergistically enhances antibiotic efficacy in Vancomycin resistance Staphylococcus aureus
Graphene oxide synergistically enhances antibiotic efficacy in Vancomycin resistance Staphylococcus aureus

Singh, V., Kumar, V., Kashyap, S., Singh, A. V., Kishore, V., Sitti, M., Saxena, P. S., Srivastava, A.

ACS Applied Bio Materials, ACS Publications, 2019 (article)

pi

[BibTex]

[BibTex]


Magnons in a Quasicrystal: Propagation, Extinction, and Localization of Spin Waves in Fibonacci Structures
Magnons in a Quasicrystal: Propagation, Extinction, and Localization of Spin Waves in Fibonacci Structures

Lisiecki, F., Rychły, J., Kuświk, P., Głowiński, H., Kłos, J. W., Groß, F., Träger, N., Bykova, I., Weigand, M., Zelent, M., Goering, E. J., Schütz, G., Krawczyk, M., Stobiecki, F., Dubowik, J., Gräfe, J.

Physical Review Applied, 11, pages: 054061, 2019 (article)

Abstract
Magnonic quasicrystals exceed the possibilities of spin-wave (SW) manipulation offered by regular magnonic crystals, because of their more complex SW spectra with fractal characteristics. Here, we report the direct x-ray microscopic observation of propagating SWs in a magnonic quasicrystal, consisting of dipolar coupled permalloy nanowires arranged in a one-dimensional Fibonacci sequence. SWs from the first and second band as well as evanescent waves from the band gap between them are imaged. Moreover, additional mini band gaps in the spectrum are demonstrated, directly indicating an influence of the quasiperiodicity of the system. Finally, the localization of SW modes within the Fibonacci crystal is shown. The experimental results are interpreted using numerical calculations and we deduce a simple model to estimate the frequency position of the magnonic gaps in quasiperiodic structures. The demonstrated features of SW spectra in one-dimensional magnonic quasicrystals allow utilizing this class of metamaterials for magnonics and make them an ideal basis for future applications.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


{Nanoscale X-ray imaging of spin dynamics in Yttrium iron garnet}
Nanoscale X-ray imaging of spin dynamics in Yttrium iron garnet

Förster, J., Wintz, S., Bailey, J., Finizio, S., Josten, E., Meertens, D., Dubs, C., Bozhko, D. A., Stoll, H., Dieterle, G., Traeger, N., Raabe, J., Slavin, A. N., Weigand, M., Gräfe, J., Schütz, G.

Journal of Applied Physics, 126, 2019 (article)

Abstract
Time-resolved scanning transmission x-ray microscopy has been used for the direct imaging of spin-wave dynamics in a thin film yttrium iron garnet (YIG) with sub-200 nm spatial resolution. Application of this x-ray transmission technique to single-crystalline garnet films was achieved by extracting a lamella (13×5×0.185 μm3) of the liquid phase epitaxy grown YIG thin film out of a gadolinium gallium garnet substrate. Spin waves in the sample were measured along the Damon-Eshbach and backward volume directions of propagation at gigahertz frequencies and with wavelengths in a range between 200 nm and 10 μm. The results were compared to theoretical models. Here, the widely used approximate dispersion equation for dipole-exchange spin waves proved to be insufficient for describing the observed Damon-Eshbach type modes. For achieving an accurate description, we made use of the full analytical theory taking mode-hybridization effects into account.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Falsification of hybrid systems using symbolic reachability and trajectory splicing

Bogomolov, S., Frehse, G., Gurung, A., Li, D., Martius, G., Ray, R.

In International Conference on Hybrid Systems: Computation and Control, pages: 1-10, HSCC’19, ACM, 2019 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


no image
Aging phenomena during phase separation in fluids: decay of autocorrelation for vapor\textendashliquid transitions

Roy, Sutapa, Bera, Arabinda, Majumder, Suman, Das, Subir K.

Soft Matter, 15(23):4743-4750, Royal Society of Chemistry, Cambridge, UK, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Controlling pattern formation in the confined Schnakenberg model

Beyer, David Bernhard

Universität Stuttgart, Stuttgart, 2019 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Flux and storage of energy in nonequilibrium stationary states

Holyst, R., Maciolek, A., Zhang, Y., Litniewski, M., Knycha\la, P., Kasprzak, M., Banaszak, M.

Physical Review E, 99(4), American Physical Society, Melville, NY, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Correlations and forces in sheared fluids with or without quenching

Rohwer, C. M., Maciolek, A., Dietrich, S., Krüger, M.

New Journal of Physics, 21, IOP Publishing, Bristol, 2019 (article)

icm

DOI [BibTex]


no image
Ensemble dependence of critical Casimir forces in films with Dirichlet boundary conditions

Rohwer, C. M., Squarcini, A., Vasilyev, O., Dietrich, S., Gross, M.

Physical Review E, 99(6), American Physical Society, Melville, NY, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Controlling the dynamics of colloidal particles by critical Casimir forces

Magazzù, A., Callegari, A., Staforelli, J. P., Gambassi, A., Dietrich, S., Volpe, G.

Soft Matter, 15(10):2152-2162, Royal Society of Chemistry, Cambridge, UK, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]