Header logo is de


2020


HOTA: A Higher Order Metric for Evaluating Multi-Object Tracking
HOTA: A Higher Order Metric for Evaluating Multi-Object Tracking

Luiten, J., Osep, A., Dendorfer, P., Torr, P., Geiger, A., Leal-Taixe, L., Leibe, B.

International Journal of Computer Vision (IJCV), 2020 (article)

Abstract
Multi-Object Tracking (MOT) has been notoriously difficult to evaluate. Previous metrics overemphasize the importance of either detection or association. To address this, we present a novel MOT evaluation metric, HOTA (Higher Order Tracking Accuracy), which explicitly balances the effect of performing accurate detection, association and localization into a single unified metric for comparing trackers. HOTA decomposes into a family of sub-metrics which are able to evaluate each of five basic error types separately, which enables clear analysis of tracking performance. We evaluate the effectiveness of HOTA on the MOTChallenge benchmark, and show that it is able to capture important aspects of MOT performance not previously taken into account by established metrics. Furthermore, we show HOTA scores better align with human visual evaluation of tracking performance.

avg

pdf [BibTex]

2020


pdf [BibTex]


Carbon nitride-based light-driven microswimmers with intrinsic photocharging ability
Carbon nitride-based light-driven microswimmers with intrinsic photocharging ability

Sridhar, V., Podjaski, F., Kröger, J., Jiménez-Solano, A., Park, B., Lotsch, B. V., Sitti, M.

Proceedings of the National Academy of Sciences, 117(40):24748-24756, 2020 (article)

pi

link (url) [BibTex]

link (url) [BibTex]


Selection for Function: From Chemically Synthesized Prototypes to 3D-Printed Microdevices
Selection for Function: From Chemically Synthesized Prototypes to 3D-Printed Microdevices

Bachmann, F., Giltinan, J., Codutti, A., Klumpp, S., Sitti, M., Faivre, D.

Advanced Intelligent Systems, pages: 2000078, 2020 (article)

pi

[BibTex]

[BibTex]


Acoustically powered surface-slipping mobile microrobots
Acoustically powered surface-slipping mobile microrobots

Aghakhani, A., Yasa, O., Wrede, P., Sitti, M.

Proceedings of the National Academy of Sciences, 117(7):3469-3477, 2020 (article)

Abstract
Untethered synthetic microrobots have significant potential to revolutionize minimally invasive medical interventions in the future. However, their relatively slow speed and low controllability near surfaces typically are some of the barriers standing in the way of their medical applications. Here, we introduce acoustically powered microrobots with a fast, unidirectional surface-slipping locomotion on both flat and curved surfaces. The proposed three-dimensionally printed, bullet-shaped microrobot contains a spherical air bubble trapped inside its internal body cavity, where the bubble is resonated using acoustic waves. The net fluidic flow due to the bubble oscillation orients the microrobot's axisymmetric axis perpendicular to the wall and then propels it laterally at very high speeds (up to 90 body lengths per second with a body length of 25 µm) while inducing an attractive force toward the wall. To achieve unidirectional locomotion, a small fin is added to the microrobot’s cylindrical body surface, which biases the propulsion direction. For motion direction control, the microrobots are coated anisotropically with a soft magnetic nanofilm layer, allowing steering under a uniform magnetic field. Finally, surface locomotion capability of the microrobots is demonstrated inside a three-dimensional circular cross-sectional microchannel under acoustic actuation. Overall, the combination of acoustic powering and magnetic steering can be effectively utilized to actuate and navigate these microrobots in confined and hard-to-reach body location areas in a minimally invasive fashion.

pi

DOI [BibTex]

DOI [BibTex]


Cohesive self-organization of mobile microrobotic swarms
Cohesive self-organization of mobile microrobotic swarms

Yigit, B., Alapan, Y., Sitti, M.

Soft Matter, 16(8):1996-2004, 2020 (article)

pi

DOI [BibTex]

DOI [BibTex]


no image
Multifunctional Magnetic Soft Composites: A Review

Wu, S., Hu, W., Ze, Q., Sitti, M., Zhao, R.

Multifunctional Materials, 2020 (article)

pi

link (url) [BibTex]

link (url) [BibTex]


Reconfigurable multifunctional ferrofluid droplet robots
Reconfigurable multifunctional ferrofluid droplet robots

Fan, X., Dong, X., Karacakol, A. C., Xie, H., Sitti, M.

Proceedings of the National Academy of Sciences, 117(45):27916-27926, 2020 (article)

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Wireless Control for Smart Manufacturing: Recent Approaches and Open Challenges
Wireless Control for Smart Manufacturing: Recent Approaches and Open Challenges

Baumann, D., Mager, F., Wetzker, U., Thiele, L., Zimmerling, M., Trimpe, S.

Proceedings of the IEEE, 2020 (article) To be published

ics

arXiv DOI [BibTex]

arXiv DOI [BibTex]


Biosynthetic self-healing materials for soft machines
Biosynthetic self-healing materials for soft machines

Pena-Francesch, A., Jung, H., Demirel, M. C., Sitti, M.

Nature Materials , 19(11):1230-1235, 2020 (article)

pi

DOI [BibTex]

DOI [BibTex]


no image
Planning from Images with Deep Latent Gaussian Process Dynamics

Bosch, N., Achterhold, J., Leal-Taixe, L., Stückler, J.

Proceedings of the 2nd Conference on Learning for Dynamics and Control (L4DC), 120, pages: 640-650, Proceedings of Machine Learning Research (PMLR), (Editors: Alexandre M. Bayen and Ali Jadbabaie and George Pappas and Pablo A. Parrilo and Benjamin Recht and Claire Tomlin and Melanie Zeilinger), 2020, arXiv:2005.03770 (conference)

ev

Ppreprint Project page Code poster [BibTex]

Ppreprint Project page Code poster [BibTex]


Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage
Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage

Haksar, R. N., Trimpe, S., Schwager, M.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

ics

DOI [BibTex]

DOI [BibTex]


no image
How to functionalise metal-organic frameworks to enable guest nanocluster embedment

King, J., Zhang, L., Doszczeczko, S., Sambalova, O., Luo, H., Rohman, F., Phillips, O., Borgschulte, A., Hirscher, M., Addicoat, M., Szilágyi, P. A.

{Journal of Materials Chemistry A}, 8(9):4889-4897, Royal Society of Chemistry, Cambridge, UK, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic and microstructural properties of anisotropic MnBi magnets compacted by spark plasma sintering

Chen, Y., Gregori, G., Rheingans, B., Huang, W., Kronmüller, H., Schütz, G., Goering, E.

{Journal of Alloys and Compounds}, 830, Elsevier B.V., Lausanne, Switzerland, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


Learning Situational Driving
Learning Situational Driving

Ohn-Bar, E., Prakash, A., Behl, A., Chitta, K., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
Human drivers have a remarkable ability to drive in diverse visual conditions and situations, e.g., from maneuvering in rainy, limited visibility conditions with no lane markings to turning in a busy intersection while yielding to pedestrians. In contrast, we find that state-of-the-art sensorimotor driving models struggle when encountering diverse settings with varying relationships between observation and action. To generalize when making decisions across diverse conditions, humans leverage multiple types of situation-specific reasoning and learning strategies. Motivated by this observation, we develop a framework for learning a situational driving policy that effectively captures reasoning under varying types of scenarios. Our key idea is to learn a mixture model with a set of policies that can capture multiple driving modes. We first optimize the mixture model through behavior cloning, and show it to result in significant gains in terms of driving performance in diverse conditions. We then refine the model by directly optimizing for the driving task itself, i.e., supervised with the navigation task reward. Our method is more scalable than methods assuming access to privileged information, e.g., perception labels, as it only assumes demonstration and reward-based supervision. We achieve over 98% success rate on the CARLA driving benchmark as well as state-of-the-art performance on a newly introduced generalization benchmark.

avg

pdf suppmat Video 2 Project Page Video 1 Slides [BibTex]

pdf suppmat Video 2 Project Page Video 1 Slides [BibTex]


On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner
On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner

Schmitt, C., Donne, S., Riegler, G., Koltun, V., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
We propose a novel formulation for joint recovery of camera pose, object geometry and spatially-varying BRDF. The input to our approach is a sequence of RGB-D images captured by a mobile, hand-held scanner that actively illuminates the scene with point light sources. Compared to previous works that jointly estimate geometry and materials from a hand-held scanner, we formulate this problem using a single objective function that can be minimized using off-the-shelf gradient-based solvers. By integrating material clustering as a differentiable operation into the optimization process, we avoid pre-processing heuristics and demonstrate that our model is able to determine the correct number of specular materials independently. We provide a study on the importance of each component in our formulation and on the requirements of the initial geometry. We show that optimizing over the poses is crucial for accurately recovering fine details and that our approach naturally results in a semantically meaningful material segmentation.

avg

pdf Project Page Slides Video Poster [BibTex]

pdf Project Page Slides Video Poster [BibTex]


no image
Cassie-Wenzel transition of a binary liquid mixture on a nanosculptured surface

Singh, S. L., Schimmele, L., Dietrich, S.

Physical Review E, 101(5), American Physical Society, Melville, NY, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model

Wolf, Z., Jusufi, A., Vogt, D. M., Lauder, G. V.

Bioinspiration & Biomimetics, 15(4):046008, Inst. of Physics, London, 2020 (article)

bio

DOI [BibTex]

DOI [BibTex]


no image
Biocompatible magnetic micro- and nanodevices: Fabrication of FePt nanopropellers and cell transfection

Kadiri, V. M., Bussi, C., Holle, A. W., Son, K., Kwon, H., Schütz, G., Gutierrez, M. G., Fischer, P.

Advanced Materials, 32(25), Wiley-VCH, Weinheim, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Causal Discovery from Heterogeneous/Nonstationary Data

Huang, B., Zhang, K., J., Z., Ramsey, J., Sanchez-Romero, R., Glymour, C., Schölkopf, B.

Journal of Machine Learning Research, 21(89):1-53, 2020 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


Optimizing Rank-based Metrics with Blackbox Differentiation
Optimizing Rank-based Metrics with Blackbox Differentiation

Rolinek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis, C., Martius, G.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 7620-7630, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020, Best paper nomination (inproceedings)

Abstract
Rank-based metrics are some of the most widely used criteria for performance evaluation of computer vision models. Despite years of effort, direct optimization for these metrics remains a challenge due to their non-differentiable and non-decomposable nature. We present an efficient, theoretically sound, and general method for differentiating rank-based metrics with mini-batch gradient descent. In addition, we address optimization instability and sparsity of the supervision signal that both arise from using rank-based metrics as optimization targets. Resulting losses based on recall and Average Precision are applied to image retrieval and object detection tasks. We obtain performance that is competitive with state-of-the-art on standard image retrieval datasets and consistently improve performance of near state-of-the-art object detectors.

al

Paper @ CVPR Long Oral Short Oral Arxiv Code Pdf Project Page [BibTex]

Paper @ CVPR Long Oral Short Oral Arxiv Code Pdf Project Page [BibTex]


no image
Metal organic frameworks as tunable linear magnets

Son, K., Kim, R. K., Kim, S., Schütz, G., Choi, K. M., Oh, H.

Physica Status Solidi A, 217(12), Wiley-VCH, Weinheim, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


Bioinspired underwater locomotion of light-driven liquid crystal gels
Bioinspired underwater locomotion of light-driven liquid crystal gels

Shahsavan, H., Aghakhani, A., Zeng, H., Guo, Y., Davidson, Z. S., Priimagi, A., Sitti, M.

Proceedings of the National Academy of Sciences, 117(10): 5125-5133, 2020 (article)

Abstract
Untethered dynamic shape programming and control of soft materials have significant applications in technologies such as soft robots, medical devices, organ-on-a-chip, and optical devices. Here, we present a solution to remotely actuate and move soft materials underwater in a fast, efficient, and controlled manner using photoresponsive liquid crystal gels (LCGs). LCG constructs with engineered molecular alignment show a low and sharp phase-transition temperature and experience considerable density reduction by light exposure, thereby allowing rapid and reversible shape changes. We demonstrate different modes of underwater locomotion, such as crawling, walking, jumping, and swimming, by localized and time-varying illumination of LCGs. The diverse locomotion modes of smart LCGs can provide a new toolbox for designing efficient light-fueled soft robots in fluid-immersed media.

pi

DOI [BibTex]

DOI [BibTex]


Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image Decomposition
Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image Decomposition

Hassan Alhaija, Siva Mustikovela, Varun Jampani, Justus Thies, Matthias Niessner, Andreas Geiger, Carsten Rother

In International Conference on 3D Vision (3DV), 2020 (inproceedings)

Abstract
Neural rendering techniques promise efficient photo-realistic image synthesis while providing rich control over scene parameters by learning the physical image formation process. While several supervised methods have been pro-posed for this task, acquiring a dataset of images with accurately aligned 3D models is very difficult. The main contribution of this work is to lift this restriction by training a neural rendering algorithm from unpaired data. We pro-pose an auto encoder for joint generation of realistic images from synthetic 3D models while simultaneously decomposing real images into their intrinsic shape and appearance properties. In contrast to a traditional graphics pipeline, our approach does not require to specify all scene properties, such as material parameters and lighting by hand.Instead, we learn photo-realistic deferred rendering from a small set of 3D models and a larger set of unaligned real images, both of which are easy to acquire in practice. Simultaneously, we obtain accurate intrinsic decompositions of real images while not requiring paired ground truth. Our experiments confirm that a joint treatment of rendering and de-composition is indeed beneficial and that our approach out-performs state-of-the-art image-to-image translation base-lines both qualitatively and quantitatively.

avg

pdf suppmat [BibTex]

pdf suppmat [BibTex]


no image
Network extraction by routing optimization

Baptista, T. D., Leite, D., Facca, E., Putti, M., De Bacco, C.

2020 (article) In revision

Abstract
Routing optimization is a relevant problem in many contexts. Solving directly this type of optimization problem is often computationally unfeasible. Recent studies suggest that one can instead turn this problem into one of solving a dynamical system of equations, which can instead be solved efficiently using numerical methods. This results in enabling the acquisition of optimal network topologies from a variety of routing problems. However, the actual extraction of the solution in terms of a final network topology relies on numerical details which can prevent an accurate investigation of their topological properties. In this context, theoretical results are fully accessible only to an expert audience and ready-to-use implementations for non-experts are rarely available or insufficiently documented. In particular, in this framework, final graph acquisition is a challenging problem in-and-of-itself. Here we introduce a method to extract networks topologies from dynamical equations related to routing optimization under various parameters’ settings. Our method is made of three steps: first, it extracts an optimal trajectory by solving a dynamical system, then it pre-extracts a network and finally, it filters out potential redundancies. Remarkably, we propose a principled model to address the filtering in the last step, and give a quantitative interpretation in terms of a transport-related cost function. This principled filtering can be applied to more general problems such as network extraction from images, thus going beyond the scenarios envisioned in the first step. Overall, this novel algorithm allows practitioners to easily extract optimal network topologies by combining basic tools from numerical methods, optimization and network theory. Thus, we provide an alternative to manual graph extraction which allows a grounded extraction from a large variety of optimal topologies.

pio

Code Preprint [BibTex]


no image
Observation of compact ferrimagnetic skyrmions in DyCo3 fim

Chen, K., Lott, D., Philippi-Kobs, A., Weigand, M., Luo, C., Radu, F.

Nanoscale, 12(35):18137-18143, Royal Society of Chemistry, Cambridge, UK, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Visual-Inertial Mapping with Non-Linear Factor Recovery

Usenko, V., Demmel, N., Schubert, D., Stückler, J., Cremers, D.

IEEE Robotics and Automation Letters (RA-L), 5, 2020, accepted for presentation at IEEE International Conference on Robotics and Automation (ICRA) 2020, to appear, arXiv:1904.06504 (article)

Abstract
Cameras and inertial measurement units are complementary sensors for ego-motion estimation and environment mapping. Their combination makes visual-inertial odometry (VIO) systems more accurate and robust. For globally consistent mapping, however, combining visual and inertial information is not straightforward. To estimate the motion and geometry with a set of images large baselines are required. Because of that, most systems operate on keyframes that have large time intervals between each other. Inertial data on the other hand quickly degrades with the duration of the intervals and after several seconds of integration, it typically contains only little useful information. In this paper, we propose to extract relevant information for visual-inertial mapping from visual-inertial odometry using non-linear factor recovery. We reconstruct a set of non-linear factors that make an optimal approximation of the information on the trajectory accumulated by VIO. To obtain a globally consistent map we combine these factors with loop-closing constraints using bundle adjustment. The VIO factors make the roll and pitch angles of the global map observable, and improve the robustness and the accuracy of the mapping. In experiments on a public benchmark, we demonstrate superior performance of our method over the state-of-the-art approaches.

ev

Code Preprint [BibTex]

Code Preprint [BibTex]


Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control
Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control

Nubert, J., Koehler, J., Berenz, V., Allgower, F., Trimpe, S.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

Abstract
Fast feedback control and safety guarantees are essential in modern robotics. We present an approach that achieves both by combining novel robust model predictive control (MPC) with function approximation via (deep) neural networks (NNs). The result is a new approach for complex tasks with nonlinear, uncertain, and constrained dynamics as are common in robotics. Specifically, we leverage recent results in MPC research to propose a new robust setpoint tracking MPC algorithm, which achieves reliable and safe tracking of a dynamic setpoint while guaranteeing stability and constraint satisfaction. The presented robust MPC scheme constitutes a one-layer approach that unifies the often separated planning and control layers, by directly computing the control command based on a reference and possibly obstacle positions. As a separate contribution, we show how the computation time of the MPC can be drastically reduced by approximating the MPC law with a NN controller. The NN is trained and validated from offline samples of the MPC, yielding statistical guarantees, and used in lieu thereof at run time. Our experiments on a state-of-the-art robot manipulator are the first to show that both the proposed robust and approximate MPC schemes scale to real-world robotic systems.

am ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


no image
Generation and characterization of focused helical x-ray beams

Loetgering, L., Baluktsian, M., Keskinbora, K., Horstmeyer, R., Wilhein, T., Schütz, G., Eikema, K. S. E., Witte, S.

Science Advances, 6(7), American Association for the Advancement of Science, 2020 (article)

mms

Generation and characterization of focused helical x-ray beams link (url) DOI [BibTex]

Generation and characterization of focused helical x-ray beams link (url) DOI [BibTex]


no image
Materials for hydrogen-based energy storage - past, recent progress and future outlook

Hirscher, M., Yartys, V. A., Baricco, M., Bellosta von Colbe, J., Blanchard, D., Bowman Jr., R. C., Broom, D. P., Buckley, C. E., Chang, F., Chen, P., Cho, Y. W., Crivello, J., Cuevas, F., David, W. I. F., de Jongh, P. E., Denys, R. V., Dornheim, M., Felderhoff, M., Filinchuk, Y., Froudakis, G. E., Grant, D. M., Gray, E. M., Hauback, B. C., He, T., Humphries, T. D., Jensen, T. R., Kim, S., Kojima, Y., Latroche, M., Li, H., Lotostskyy, M. V., Makepeace, J. W., M\oller, K. T., Naheed, L., Ngene, P., Noréus, D., Nyg\aard, M. M., Orimo, S., Paskevicius, M., Pasquini, L., Ravnsbaek, D. B., Sofianos, M. V., Udovic, T. J., Vegge, T., Walker, G. S., Webb, C. J., Weidenthaler, C., Zlotea, C.

{Journal of Alloys and Compounds}, 827, Elsevier B.V., Lausanne, Switzerland, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


{Thermal nucleation and high-resolution imaging of submicrometer magnetic bubbles in thin thulium iron garnet films with perpendicular anisotropy}
Thermal nucleation and high-resolution imaging of submicrometer magnetic bubbles in thin thulium iron garnet films with perpendicular anisotropy

Büttner, F., Mawass, M. A., Bauer, J., Rosenberg, E., Caretta, L., Avci, C. O., Gräfe, J., Finizio, S., Vaz, C. A. F., Novakovic, N., Weigand, M., Litzius, K., Förster, J., Träger, N., Groß, F., Suzuki, D., Huang, M., Bartell, J., Kronast, F., Raabe, J., Schütz, G., Ross, C. A., Beach, G. S. D.

{Physical Review Materials}, 4(1), American Physical Society, College Park, MD, 2020 (article)

Abstract
Ferrimagnetic iron garnets are promising materials for spintronics applications, characterized by ultralow damping and zero current shunting. It has recently been found that few nm-thick garnet films interfaced with a heavy metal can also exhibit sizable interfacial spin-orbit interactions, leading to the emergence, and efficient electrical control, of one-dimensional chiral domain walls. Two-dimensional bubbles, by contrast, have so far only been confirmed in micrometer-thick films. Here, we show by high resolution scanning transmission x-ray microscopy and photoemission electron microscopy that submicrometer bubbles can be nucleated and stabilized in ∼25-nm-thick thulium iron garnet films via short heat pulses generated by electric current in an adjacent Pt strip, or by ultrafast laser illumination. We also find that quasistatic processes do not lead to the formation of a bubble state, suggesting that the thermodynamic path to reaching that state requires transient dynamics. X-ray imaging reveals that the bubbles have Bloch-type walls with random chirality and topology, indicating negligible chiral interactions at the garnet film thickness studied here. The robustness of thermal nucleation and the feasibility demonstrated here to image garnet-based devices by x-rays both in transmission geometry and with sensitivity to the domain wall chirality are critical steps to enabling the study of small spin textures and dynamics in perpendicularly magnetized thin-film garnets.

mms

DOI [BibTex]

DOI [BibTex]


{Real-space imaging of confined magnetic skyrmion tubes}
Real-space imaging of confined magnetic skyrmion tubes

Birch, M. T., Cortés-Ortuño, D., Turnbull, L. A., Wilson, M. N., Groß, F., Träger, N., Laurenson, A., Bukin, N., Moody, S. H., Weigand, M., Schütz, G., Popescu, H., Fan, R., Steadman, P., Verezhak, J. A. T., Balakrishnan, G., Loudon, J. C., Twitchett-Harrison, A. C., Hovorka, O., Fangohr, H., Ogrin, F., Gräfe, J., Hatton, P. D.

Nature Communications, 11, pages: 1726, 2020 (article)

Abstract
Magnetic skyrmions are topologically nontrivial particles with a potential application as information elements in future spintronic device architectures. While they are commonly portrayed as two dimensional objects, in reality magnetic skyrmions are thought to exist as elongated, tube-like objects extending through the thickness of the host material. The study of this skyrmion tube state (SkT) is vital for furthering the understanding of skyrmion formation and dynamics for future applications. However, direct experimental imaging of skyrmion tubes has yet to be reported. Here, we demonstrate the real-space observation of skyrmion tubes in a lamella of FeGe using resonant magnetic x-ray imaging and comparative micromagnetic simulations, confirming their extended structure. The formation of these structures at the edge of the sample highlights the importance of confinement and edge effects in the stabilisation of the SkT state, opening the door to further investigation into this unexplored dimension of the skyrmion spin texture.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Introducing Progress in Biomedical Engineering; Issue 2 Vol 2

Sitti, M.

Progress in Biomedical Engineering, IOP Publishing, 2020 (article)

pi

[BibTex]

[BibTex]


Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision
Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision

Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
Learning-based 3D reconstruction methods have shown impressive results. However, most methods require 3D supervision which is often hard to obtain for real-world datasets. Recently, several works have proposed differentiable rendering techniques to train reconstruction models from RGB images. Unfortunately, these approaches are currently restricted to voxel- and mesh-based representations, suffering from discretization or low resolution. In this work, we propose a differentiable rendering formulation for implicit shape and texture representations. Implicit representations have recently gained popularity as they represent shape and texture continuously. Our key insight is that depth gradients can be derived analytically using the concept of implicit differentiation. This allows us to learn implicit shape and texture representations directly from RGB images. We experimentally show that our single-view reconstructions rival those learned with full 3D supervision. Moreover, we find that our method can be used for multi-view 3D reconstruction, directly resulting in watertight meshes.

avg

pdf suppmat Video 2 Project Page Video 1 Video 3 Slides Poster [BibTex]

pdf suppmat Video 2 Project Page Video 1 Video 3 Slides Poster [BibTex]


no image
Divide-and-Conquer Monte Carlo Tree Search for goal directed planning

Parascandolo*, G., Buesing*, L., Merel, J., Hasenclever, L., Aslanides, J., Hamrick, J. B., Heess, N., Neitz, A., Weber, T.

2020, *equal contribution (conference) Submitted

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Energy storage in steady states under cyclic local energy input

Zhang, Y., Holyst, R., Maciolek, A.

Physical Review E, 101(1), American Physical Society, Melville, NY, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Current-induced dynamical tilting of chiral domain walls in curved microwires

Finizio, S., Wintz, S., Mayr, S., Huxtable, A. J., Langer, M., Bailey, J., Burnell, G., Marrows, C. H., Raabe, J.

Applied Physics Letters, 116(18), American Institute of Physics, Melville, NY, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Numerical simulations of self-diffusiophoretic colloids at fluid interfaces

Peter, T., Malgaretti, P., Rivas, N., Scagliarini, A., Harting, J., Dietrich, S.

Soft Matter, 16(14):3536-3547, Royal Society of Chemistry, Cambridge, UK, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Highly effective hydrogen isotope separation through dihydrogen bond on Cu(I)-exchanged zeolites well above liquid nitrogen temperature

Xiong, R., Zhang, L., Li, P., Luo, W., Tang, T., Ao, B., Sang, G., Chen, C., Yan, X., Chen, J., Hirscher, M.

Chemical Engineering Journal, 391, Elsevier, Lausanne, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
DirectShape: Photometric Alignment of Shape Priors for Visual Vehicle Pose and Shape Estimation

Wang, R., Yang, N., Stückler, J., Cremers, D.

In Proceedings of the IEEE international Conference on Robotics and Automation (ICRA), 2020, arXiv:1904.10097 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Learning to Adapt Multi-View Stereo by Self-Supervision

Mallick, A., Stückler, J., Lensch, H.

Proceedings of the British Machine Vision Conference (BMVC), 2020, to appear (conference) To be published

ev

link (url) [BibTex]

link (url) [BibTex]


Event-triggered Learning for Linear Quadratic Control
Event-triggered Learning for Linear Quadratic Control

Schlüter, H., Solowjow, F., Trimpe, S.

IEEE Transactions on Automatic Control, 2020 (article) Accepted

ics

arXiv [BibTex]

arXiv [BibTex]


no image
Ferrimagnetic skyrmions in topological insulator/ferrimagnet heterostructures

Wu, H., Groß, F., Dai, B. Q., Lujan, D., Razavi, S. A., Zhang, P., Liu, Y. X., Sobotkiewich, K., Förster, J., Weigand, M., Schütz, G., Li, X. Q., Gräfe, J., Wang, K. L.

Advanced Materials, 32(34), Wiley-VCH, Weinheim, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients
Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients

Giachini, P., Gupta, S., Wang, W., Wood, D., Yunusa, M., Baharlou, E., Sitti, M., Menges, A.

Science Advances, 6(8):eaay0929, 2020 (article)

Abstract
Functionally graded materials (FGMs) enable applications in fields such as biomedicine and architecture, but their fabrication suffers from shortcomings in gradient continuity, interfacial bonding, and directional freedom. In addition, most commercial design software fail to incorporate property gradient data, hindering explorations of the design space of FGMs. Here, we leveraged a combined approach of materials engineering and digital processing to enable extrusion-based multimaterial additive manufacturing of cellulose-based tunable viscoelastic materials with continuous, high-contrast, and multidirectional stiffness gradients. A method to engineer sets of cellulose-based materials with similar compositions, yet distinct mechanical and rheological properties, was established. In parallel, a digital workflow was developed to embed gradient information into design models with integrated fabrication path planning. The payoff of integrating these physical and digital tools is the ability to achieve the same stiffness gradient in multiple ways, opening design possibilities previously limited by the rigid coupling of material and geometry.

pi

DOI [BibTex]

DOI [BibTex]


Liquid-Superrepellent Bioinspired Fibrillar Adhesives
Liquid-Superrepellent Bioinspired Fibrillar Adhesives

Liimatainen, V., Drotlef, D., Son, D., Sitti, M.

Advanced Materials, pages: e2000497, 2020 (article)

pi

DOI [BibTex]