Header logo is


2019


no image
Dynamics of the critical Casimir force for a conserved order parameter after a critical quench

Gross, M., Rohwer, C. M., Dietrich, S.

Physical Review E, 100(1), American Physical Society, Melville, NY, 2019 (article)

icm

DOI [BibTex]

2019


DOI [BibTex]


no image
Interface structures in ionic liquid crystals

Bartsch, H., Bier, M., Dietrich, S.

Soft Matter, 15(20):4109-4126, Royal Society of Chemistry, Cambridge, UK, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Interfacial premelting of ice in nano composite materials

Li, H., Bier, M., Mars, J., Weiss, H., Dippel, A., Gutowski, O., Honkimäki, V., Mezger, M.

Physical Chemistry Chemical Physics, 21(7):3734-3741, Royal Society of Chemistry, Cambridge, England, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Connections Matter: On the Importance of Pore Percolation for Nanoporous Supercapacitors

Vasilyev, O., Kornyshev, A. A., Kondrat, S.

ACS Applied Energy Materials, 2(8):5386-5390, American Chemical Society, Washington, DC, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Theory of light-activated catalytic Janus particles

Uspal, W. E.

The Journal of Chemical Physics, 150(11), American Institute of Physics, Woodbury, N.Y., 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Recovering superhydrophobicity in nanoscale and macroscale surface textures

Giacomello, A., Schimmele, L., Dietrich, S., Tasinkevych, M.

Soft Matter, 15(37):7462-7471, Royal Society of Chemistry, Cambridge, UK, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Brownian dynamics assessment of enhanced diffusion exhibited by "fluctuating-dumbbell enzymes".

Kondrat, S., Popescu, M. N.

Physical Chemistry Chemical Physics, 21(35):18811-18815, Royal Society of Chemistry, Cambridge, England, 2019 (article)

icm

DOI [BibTex]

DOI [BibTex]


Das Tier als Modell für Roboter, und Roboter als Modell für Tiere
Das Tier als Modell für Roboter, und Roboter als Modell für Tiere

Badri-Spröwitz, A.

In pages: 167-175, Springer, 2019 (incollection)

dlg

DOI [BibTex]

DOI [BibTex]


no image
Heads or Tails? Cranio-Caudal Mass Distribution for Robust Locomotion with Biorobotic Appendages Composed of 3D-Printed Soft Materials

Siddall, R., Schwab, F., Michel, J., Weaver, J., Jusufi, A.

In Biomimetic and Biohybrid Systems, 11556, pages: 240-253, Lecture Notes in Artificial Intelligence, (Editors: Martinez-Hernandez, Uriel and Vouloutsi, Vasiliki and Mura, Anna and Mangan, Michael and Asada, Minoru and Prescott, Tony J. and Verschure, Paul F. M. J.), Springer, Cham, Living Machines 2019: 8th International Conference on Biomimetic and Biohybrid Systems, 2019 (inproceedings)

bio

DOI [BibTex]

DOI [BibTex]


no image
A general electromechanical model for plates with integrated piezo-patches using spectral-Tchebychev method

Aghakhani, A., Motlagh, P. L., Bediz, B., Basdogan, I.

Journal of Sound and Vibration, 458, Elsevier, 2019 (article)

pi

[BibTex]

[BibTex]


Probabilistic Linear Solvers: A Unifying View
Probabilistic Linear Solvers: A Unifying View

Bartels, S., Cockayne, J., Ipsen, I., Hennig, P.

Statistics and Computing, 29(6):1249-1263, 2019 (article)

pn

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Workshops of the seventh international brain-computer interface meeting: not getting lost in translation

Huggins, J. E., Guger, C., Aarnoutse, E., Allison, B., Anderson, C. W., Bedrick, S., Besio, W., Chavarriaga, R., Collinger, J. L., Do, A. H., Herff, C., Hohmann, M., Kinsella, M., Lee, K., Lotte, F., Müller-Putz, G., Nijholt, A., Pels, E., Peters, B., Putze, F., Rupp, R. S. G., Scott, S., Tangermann, M., Tubig, P., Zander, T.

Brain-Computer Interfaces, 6(3):71-101, Taylor & Francis, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Compatible natural gradient policy search

Pajarinen, J., Thai, H. L., Akrour, R., Peters, J., Neumann, G.

Machine Learning, 108(8):1443-1466, (Editors: Karsten Borgwardt, Po-Ling Loh, Evimaria Terzi, and Antti Ukkonen), 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Learning stable and predictive structures in kinetic systems

Pfister, N., Bauer, S., Peters, J.

Proceedings of the National Academy of Sciences (PNAS), 116(51):25405-25411, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


The adoption of three-dimensional additive manufacturing from biomedical material design to 3d organ printing
The adoption of three-dimensional additive manufacturing from biomedical material design to 3d organ printing

Vikram Singh, A., Hasan Dad Ansari, M., Wang, S., Laux, P., Luch, A., Kumar, A., Patil, R., Nussberger, S.

Applied Sciences, 9, Multidisciplinary Digital Publishing Institute, 2019 (article)

pi

DOI [BibTex]

DOI [BibTex]


Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices
Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices

Kim, S., Amjadi, M., Lee, T., Jeong, Y., Kwon, D., Kim, M. S., Kim, K., Kim, T., Oh, Y. S., Park, I.

ACS applied materials \& interfaces, ACS Publications, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Fairness Constraints: A Flexible Approach for Fair Classification

Zafar, M. B., Valera, I., Gomez-Rodriguez, M., Krishna, P.

Journal of Machine Learning Research, 20(75):1-42, 2019 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Helminthicidal and Larvicidal Potentials of Biogenic Silver Nanoparticles Synthesized from Medicinal Plant Momordica charantia

Shelar, A., Sangshetti, J., Chakraborti, S., Singh, A. V., Patil, R., Gosavi, S.

Medicinal Chemistry, 25, Bentham Science Publishers, 2019 (article)

pi

DOI [BibTex]

DOI [BibTex]


A Rational Reinterpretation of Dual Process Theories
A Rational Reinterpretation of Dual Process Theories

Milli, S., Lieder, F., Griffiths, T. L.

2019 (article)

Abstract
Highly influential "dual-process" accounts of human cognition postulate the coexistence of a slow accurate system with a fast error-prone system. But why would there be just two systems rather than, say, one or 93? Here, we argue that a dual-process architecture might be neither arbitrary nor irrational, but might instead reflect a rational tradeoff between the cognitive flexibility afforded by multiple systems and the time and effort required to choose between them. We investigate what the optimal set and number of cognitive systems would be depending on the structure of the environment. We find that the optimal number of systems depends on the variability of the environment and the difficulty of deciding when which system should be used. Furthermore, when having two systems is optimal, then the first system is fast but error-prone and the second system is slow but accurate. Our findings thereby provide a rational reinterpretation of dual-process theories.

re

DOI [BibTex]

DOI [BibTex]


no image
Microstructural dependence of the fracture toughness of metallic thin films: A bulge test and atomistic simulation study on single-crystalline and polycrystalline silver films

Preiss, E. I., Lyu, H., Liebig, J. P., Richter, G., Gannott, F., Gruber, P. A., Goken, M., Bitzek, E., Merle, B.

Journal of Materials Research, 34(20):3483-3494, 2019 (article)

ZWE

DOI [BibTex]

DOI [BibTex]


no image
Superior Magnetic Performance in FePt L1(0) Nanomaterials

Son, K., Ryu, G., Jeong, H. H., Fink, L., Merz, M., Nagel, P., Schuppler, S., Richter, G., Goering, E., Schutz, G.

Small, 15(34), 2019 (article)

ZWE

DOI [BibTex]

DOI [BibTex]


no image
Osteoblast Response to Different UVA-Activated Anatase Implant Coatings

Liang, L. C., Krieg, P., Rupp, F., Kimmerle-Muller, E., Spintzyk, S., Richter, M., Richter, G., Killinger, A., Geis-Gerstorfer, J., Scheideler, L.

Advanced Materials Interfaces, 6(4), 2019 (article)

ZWE

DOI [BibTex]

DOI [BibTex]


no image
On pinning-depinning and microkink-flow in solid state dewetting: Insights by in-situ ESEM on Al thin films

Hieke, S. W., Willinger, M. G., Wang, Z. J., Richter, G., Chatain, D., Dehm, G., Scheu, C.

Acta Materialia, 165, pages: 153-163, 2019 (article)

ZWE

DOI [BibTex]

DOI [BibTex]


no image
Artifacts from manganese reduction in rock samples prepared by focused ion beam (FIB) slicing for X-ray microspectroscopy

Macholdt, D. S., Förster, J., Müller, M., Weber, B., Kappl, M., Kilcoyne, A. L. D., Weigand, M., Leitner, J., Jochum, K. P., Pöhlker, C., Andreae, M. O.

{Geoscientific instrumentation, methods and data systems}, 8(1):97-111, Copernicus Publ., Göttingen, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic field dependence of mangetotransport properties of MgB2/CrO2 bilayer thin films

Alzayed, N. S., Shahabuddin, M., Ramey, S. M., Soltan, S.

{Journal of Superconductivity and Novel Magnetism}, 32(8):2447-2455, Springer Science + Business Media B.V., New York, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
In Situ Generated Gold Nanoparticles on Active Carbon as Reusable Highly Efficient Catalysts for a C-sp3-C-sp3 Stille Coupling

Holz, J., Pfeffer, C., Zuo, H., Beierlein, D., Richter, G., Klemm, E., Peters, R.

Angewandte Chemie-International Edition, 58(30):10330-10334, 2019 (article)

ZWE

DOI [BibTex]

DOI [BibTex]


no image
Mixed-state magnetotransport properties of MgB2 thin film prepared by pulsed laser deposition on an Al2O3 substrate

Alzayed, N. S., Shahabuddin, M., Ramey, S. M., Soltan, S.

{Journal of Materials Science: Materials in Electronics}, 30(2):1547-1552, Springer, Norwell, MA, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Fabrication of alpha-FeSi2 nanowhiskers and nanoblades via electron beam physical vapor deposition

Huang, W. T., Srot, V., Wagner, J., Richter, G.

Materials & Design, 182, 2019 (article)

ZWE

DOI [BibTex]

DOI [BibTex]


no image
Engineering of hollow AlAu2 nanoparticles on sapphire by solid state dewetting and oxidation of Al

Gazit, N., Richter, G., Sharma, A., Klinger, L., Rabkin, E.

Materials & Design, 165, 2019 (article)

ZWE

DOI [BibTex]

DOI [BibTex]


no image
Tailoring of an unusual oxidation state in a lanthanum tantalum(IV) oxynitride via precursor microstructure design

Bubeck, C., Widenmeyer, M., Richter, G., Coduri, M., Goering, E., Yoon, S., Weidenkaff, A.

Communications Chemistry, 2, 2019 (article)

ZWE

DOI [BibTex]

DOI [BibTex]


no image
Hydrogen embrittlement in metallic nanowires

Yin, S., Cheng, G. M., Chang, T. H., Richter, G., Zhu, Y., Gao, H. J.

Nature Communications, 10, 2019 (article)

ZWE

DOI [BibTex]

DOI [BibTex]


no image
Concepts for improving hydrogen storage in nanoporous materials

Broom, D. P., Webb, C. J., Fanourgakis, G. S., Froudakis, G. E., Trikalitis, P. N., Hirscher, M.

{International Journal of Hydrogen Energy}, 44(15):7768-7779, Elsevier, Amsterdam, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comparison of theories of fast and ultrafast magnetization dynamics

Fähnle, M.

{Journal of Magnetism and Magnetic Materials}, 469, pages: 28-29, NH, Elsevier, Amsterdam, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Controlling dislocation nucleation-mediated plasticity in nanostructures via surface modification

Shin, J., Chen, L. Y., Sanli, U. T., Richter, G., Labat, S., Richard, M. I., Richard, M. I., Thomas, O., Gianola, D. S.

Acta Materialia, 166, pages: 572-586, 2019 (article)

ZWE

DOI [BibTex]

DOI [BibTex]


no image
Ionic conductivity of melt-frozen LiBH4 films

Truck, J., Hadjixenophontos, E., Joshi, Y., Richter, G., Stender, P., Schmitz, G.

Rsc Advances, 9(66):38855-38859, 2019 (article)

ZWE

DOI [BibTex]

DOI [BibTex]


no image
Transition of Deformation Mechanisms in Single-Crystalline Metallic Nanowires

Yin, S., Cheng, G. M., Richter, G., Gao, H. J., Zhu, Y.

Acs Nano, 13(8):9082-9090, 2019 (article)

ZWE

DOI [BibTex]

DOI [BibTex]


no image
Controlling dislocation nucleation-mediatd plasticity in nanostructures via surface modification

Shin, J., Chen, L. Y., Sanli, U. T., Richter, G., Labat, S., Richard, M., Cornelius, T., Thomas, O., Gianola, D. S.

{Acta Materialia}, 166, pages: 572-586, Elsevier Science, Kidlington, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Reprogrammability and scalability of magnonic Fibonacci quasicrystals

Lisiecki, F., Rychly, J., Kuswik, P., Glowinski, H., Klos, J. W., Groß, F., Bykova, I., Weigand, M., Zelent, M., Goering, E. J., Schütz, G., Gubbiotti, G., Krawczyk, M., Stobiecki, F., Dubowik, J., Gräfe, J.

{Physical Review Applied}, 11(5), American Physical Society, College Park, Md. [u.a.], 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Peptide-Induced Biomineralization of Tin Oxide (SnO2) Nanoparticles for Antibacterial Applications

Singh, A. V., Jahnke, T., Xiao, Y., Wang, S., Yu, Y., David, H., Richter, G., Laux, P., Luch, A., Srivastava, A., Saxena, P. S., Bill, J., Sitti, M.

Journal of Nanoscience and Nanotechnology, 19(9):5674-5686, 2019 (article)

ZWE

DOI [BibTex]

DOI [BibTex]

2011


no image
Projected Newton-type methods in machine learning

Schmidt, M., Kim, D., Sra, S.

In Optimization for Machine Learning, pages: 305-330, (Editors: Sra, S., Nowozin, S. and Wright, S. J.), MIT Press, Cambridge, MA, USA, December 2011 (inbook)

Abstract
We consider projected Newton-type methods for solving large-scale optimization problems arising in machine learning and related fields. We first introduce an algorithmic framework for projected Newton-type methods by reviewing a canonical projected (quasi-)Newton method. This method, while conceptually pleasing, has a high computation cost per iteration. Thus, we discuss two variants that are more scalable, namely, two-metric projection and inexact projection methods. Finally, we show how to apply the Newton-type framework to handle non-smooth objectives. Examples are provided throughout the chapter to illustrate machine learning applications of our framework.

ei

PDF Web [BibTex]

2011


PDF Web [BibTex]


no image
Statistical estimation for optimization problems on graphs

Langovoy, M., Sra, S.

In pages: 1-6, NIPS Workshop on Discrete Optimization in Machine Learning (DISCML): Uncertainty, Generalization and Feedback , December 2011 (inproceedings)

Abstract
Large graphs abound in machine learning, data mining, and several related areas. A useful step towards analyzing such graphs is that of obtaining certain summary statistics — e.g., or the expected length of a shortest path between two nodes, or the expected weight of a minimum spanning tree of the graph, etc. These statistics provide insight into the structure of a graph, and they can help predict global properties of a graph. Motivated thus, we propose to study statistical properties of structured subgraphs (of a given graph), in particular, to estimate the expected objective function value of a combinatorial optimization problem over these subgraphs. The general task is very difficult, if not unsolvable; so for concreteness we describe a more specific statistical estimation problem based on spanning trees. We hope that our position paper encourages others to also study other types of graphical structures for which one can prove nontrivial statistical estimates.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
On the discardability of data in Support Vector Classification problems

Del Favero, S., Varagnolo, D., Dinuzzo, F., Schenato, L., Pillonetto, G.

In pages: 3210-3215, IEEE, Piscataway, NJ, USA, 50th IEEE Conference on Decision and Control and European Control Conference (CDC - ECC), December 2011 (inproceedings)

Abstract
We analyze the problem of data sets reduction for support vector classification. The work is also motivated by distributed problems, where sensors collect binary measurements at different locations moving inside an environment that needs to be divided into a collection of regions labeled in two different ways. The scope is to let each agent retain and exchange only those measurements that are mostly informative for the collective reconstruction of the decision boundary. For the case of separable classes, we provide the exact conditions and an efficient algorithm to determine if an element in the training set can become a support vector when new data arrive. The analysis is then extended to the non-separable case deriving a sufficient discardability condition and a general data selection scheme for classification. Numerical experiments relative to the distributed problem show that the proposed procedure allows the agents to exchange a small amount of the collected data to obtain a highly predictive decision boundary.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Combined whole-body PET/MR imaging: MR contrast agents do not affect the quantitative accuracy of PET following attenuation correction

Lois, C., Kupferschläger, J., Bezrukov, I., Schmidt, H., Werner, M., Mannheim, J., Pichler, B., Schwenzer, N., Beyer, T.

(SST15-05 ), 97th Scientific Assemble and Annual Meeting of the Radiological Society of North America (RSNA), December 2011 (talk)

Abstract
PURPOSE Combined PET/MR imaging entails the use of MR contrast agents (MRCA) as part of integrated protocols. We assess additional attenuation of the PET emission signals in the presence of oral and intraveneous (iv) MRCA made up of iron oxide and Gd-chelates, respectively. METHOD AND MATERIALS Phantom scans were performed on a clinical PET/CT (Biograph HiRez16, Siemens) and integrated whole-body PET/MR (Biograph mMR, Siemens) using oral (Lumirem) and intraveneous (Gadovist) MRCA. Reference PET attenuation values were determined on a small-animal PET (Inveon, Siemens) using standard PET transmission imaging (TX). Seven syringes of 5mL were filled with (a) Water, (b) Lumirem_100 (100% conc.), (c) Gadovist_100 (100%), (d) Gadovist_18 (18%), (e) Gadovist_02 (0.2%), (f) Imeron-400 CT iv-contrast (100%) and (g) Imeron-400 (2.4%). The same set of syringes was scanned on CT (Sensation16, Siemens) at 120kVp and 160mAs. The effect of MRCA on the attenuation of PET emission data was evaluated using a 20cm cylinder filled uniformly with [18F]-FDG (FDG) in water (BGD). Three 4.5cm diameter cylinders were inserted into the phantom: (C1) Teflon, (C2) Water+FDG (2:1) and (C3) Lumirem_100+FDG (2:1). Two 50mL syringes filled with Gadovist_02+FDG (Sy1) and water+FDG (Sy2) were attached to the sides of (C1) to mimick the effects of iv-contrast in vessels near bone. Syringe-to-background activity ratio was 4-to-1. PET emission data were acquired for 10min each using the PET/CT and the PET/MR. Images were reconstructed using CT- and MR-based attenuation correction. RESULTS Mean linear PET attenuation (cm-1) on TX was (a) 0.098, (b) 0.098, (c) 0.300, (d) 0.134, (e) 0.095, (f) 0.397 and (g) 0.105. Corresponding CT attenuation (HU) was: (a) 5, (b) 14, (c) 3070, (d) 1040, (e) 13, (f) 3070 and (g) 347. Lumirem had little effect on PET attenuation with (C3) being 13% and 10% higher than (C2) on PET/CT and PET/MR, respectively. Gadovist_02 had even smaller effects with (Sy1) being 2.5% lower than (Sy2) on PET/CT and 1.2% higher than (Sy2) on PET/MR. CONCLUSION MRCA in high and clinically relevant concentrations have attenuation values similar to that of CT contrast and water, respectively. In clinical PET/MR scenarios MRCA are not expected to lead to significant attenuation of the PET emission signals.

ei

Web [BibTex]

Web [BibTex]


no image
Causal Inference on Discrete Data using Additive Noise Models

Peters, J., Janzing, D., Schölkopf, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12):2436-2450, December 2011 (article)

Abstract
Inferring the causal structure of a set of random variables from a finite sample of the joint distribution is an important problem in science. The case of two random variables is particularly challenging since no (conditional) independences can be exploited. Recent methods that are based on additive noise models suggest the following principle: Whenever the joint distribution {\bf P}^{(X,Y)} admits such a model in one direction, e.g., Y=f(X)+N, N \perp\kern-6pt \perp X, but does not admit the reversed model X=g(Y)+\tilde{N}, \tilde{N} \perp\kern-6pt \perp Y, one infers the former direction to be causal (i.e., X\rightarrow Y). Up to now, these approaches only dealt with continuous variables. In many situations, however, the variables of interest are discrete or even have only finitely many states. In this work, we extend the notion of additive noise models to these cases. We prove that it almost never occurs that additive noise models can be fit in both directions. We further propose an efficient algorithm that is able to perform this way of causal inference on finite samples of discrete variables. We show that the algorithm works on both synthetic and real data sets.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Spontaneous epigenetic variation in the Arabidopsis thaliana methylome

Becker, C., Hagmann, J., Müller, J., Koenig, D., Stegle, O., Borgwardt, K., Weigel, D.

Nature, 480(7376):245-249, December 2011 (article)

Abstract
Heritable epigenetic polymorphisms, such as differential cytosine methylation, can underlie phenotypic variation1, 2. Moreover, wild strains of the plant Arabidopsis thaliana differ in many epialleles3, 4, and these can influence the expression of nearby genes1, 2. However, to understand their role in evolution5, it is imperative to ascertain the emergence rate and stability of epialleles, including those that are not due to structural variation. We have compared genome-wide DNA methylation among 10 A. thaliana lines, derived 30 generations ago from a common ancestor6. Epimutations at individual positions were easily detected, and close to 30,000 cytosines in each strain were differentially methylated. In contrast, larger regions of contiguous methylation were much more stable, and the frequency of changes was in the same low range as that of DNA mutations7. Like individual positions, the same regions were often affected by differential methylation in independent lines, with evidence for recurrent cycles of forward and reverse mutations. Transposable elements and short interfering RNAs have been causally linked to DNA methylation8. In agreement, differentially methylated sites were farther from transposable elements and showed less association with short interfering RNA expression than invariant positions. The biased distribution and frequent reversion of epimutations have important implications for the potential contribution of sequence-independent epialleles to plant evolution.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Optimization for Machine Learning

Sra, S., Nowozin, S., Wright, S.

pages: 494, Neural information processing series, MIT Press, Cambridge, MA, USA, December 2011 (book)

Abstract
The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

ei

Web [BibTex]

Web [BibTex]


no image
Information, learning and falsification

Balduzzi, D.

In pages: 1-4, NIPS Philosophy and Machine Learning Workshop, December 2011 (inproceedings)

Abstract
There are (at least) three approaches to quantifying information. The first, algorithmic information or Kolmogorov complexity, takes events as strings and, given a universal Turing machine, quantifies the information content of a string as the length of the shortest program producing it [1]. The second, Shannon information, takes events as belonging to ensembles and quantifies the information resulting from observing the given event in terms of the number of alternate events that have been ruled out [2]. The third, statistical learning theory, has introduced measures of capacity that control (in part) the expected risk of classifiers [3]. These capacities quantify the expectations regarding future data that learning algorithms embed into classifiers. Solomonoff and Hutter have applied algorithmic information to prove remarkable results on universal induction. Shannon information provides the mathematical foundation for communication and coding theory. However, both approaches have shortcomings. Algorithmic information is not computable, severely limiting its practical usefulness. Shannon information refers to ensembles rather than actual events: it makes no sense to compute the Shannon information of a single string – or rather, there are many answers to this question depending on how a related ensemble is constructed. Although there are asymptotic results linking algorithmic and Shannon information, it is unsatisfying that there is such a large gap – a difference in kind – between the two measures. This note describes a new method of quantifying information, effective information, that links algorithmic information to Shannon information, and also links both to capacities arising in statistical learning theory [4, 5]. After introducing the measure, we show that it provides a non-universal analog of Kolmogorov complexity. We then apply it to derive basic capacities in statistical learning theory: empirical VC-entropy and empirical Rademacher complexity. A nice byproduct of our approach is an interpretation of the explanatory power of a learning algorithm in terms of the number of hypotheses it falsifies [6], counted in two different ways for the two capacities. We also discuss how effective information relates to information gain, Shannon and mutual information.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A general linear non-Gaussian state-space model: Identifiability, identification, and applications

Zhang, K., Hyvärinen, A.

In JMLR Workshop and Conference Proceedings Volume 20, pages: 113-128, (Editors: Hsu, C.-N. , W.S. Lee ), MIT Press, Cambridge, MA, USA, 3rd Asian Conference on Machine Learning (ACML), November 2011 (inproceedings)

Abstract
State-space modeling provides a powerful tool for system identification and prediction. In linear state-space models the data are usually assumed to be Gaussian and the models have certain structural constraints such that they are identifiable. In this paper we propose a non-Gaussian state-space model which does not have such constraints. We prove that this model is fully identifiable. We then propose an efficient two-step method for parameter estimation: one first extracts the subspace of the latent processes based on the temporal information of the data, and then performs multichannel blind deconvolution, making use of both the temporal information and non-Gaussianity. We conduct a series of simulations to illustrate the performance of the proposed method. Finally, we apply the proposed model and parameter estimation method on real data, including major world stock indices and magnetoencephalography (MEG) recordings. Experimental results are encouraging and show the practical usefulness of the proposed model and method.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Non-stationary correction of optical aberrations

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

In pages: 659-666 , (Editors: DN Metaxas and L Quan and A Sanfeliu and LJ Van Gool), IEEE, Piscataway, NJ, USA, 13th IEEE International Conference on Computer Vision (ICCV), November 2011 (inproceedings)

Abstract
Taking a sharp photo at several megapixel resolution traditionally relies on high grade lenses. In this paper, we present an approach to alleviate image degradations caused by imperfect optics. We rely on a calibration step to encode the optical aberrations in a space-variant point spread function and obtain a corrected image by non-stationary deconvolution. By including the Bayer array in our image formation model, we can perform demosaicing as part of the deconvolution.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]