Header logo is


2005


Thumb xl pets 2005 copy
A quantitative evaluation of video-based 3D person tracking

Balan, A. O., Sigal, L., Black, M. J.

In The Second Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, VS-PETS, pages: 349-356, October 2005 (inproceedings)

ps

pdf [BibTex]

2005


pdf [BibTex]


no image
Implicit Surfaces For Modelling Human Heads

Steinke, F.

Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, September 2005 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
A new methodology for robot controller design

Peters, J., Peters, J., Mistry, M., Udwadia, F.

In Proceedings of the 5th ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC‘05), 5, pages: 1067-1076 , ASME, New York, NY, USA, 5th ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-MSNDC), September 2005 (inproceedings)

Abstract
Gauss' principle of least constraint and its generalizations have provided a useful insights for the development of tracking controllers for mechanical systems [1]. Using this concept, we present a novel methodology for the design of a specific class of robot controllers. With our new framework, we demonstrate that well-known and also several novel nonlinear robot control laws can be derived from this generic framework, and show experimental verifications on a Sarcos Master Arm robot for some of these controllers. We believe that the suggested approach unifies and simplifies the design of optimal nonlinear control laws for robots obeying rigid body dynamics equations, both with or without external constraints, holonomic or nonholonomic constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Clustering on the Unit Hypersphere using von Mises-Fisher Distributions

Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.

Journal of Machine Learning Research, 6, pages: 1345-1382, September 2005 (article)

Abstract
Several large scale data mining applications, such as text categorization and gene expression analysis, involve high-dimensional data that is also inherently directional in nature. Often such data is L2 normalized so that it lies on the surface of a unit hypersphere. Popular models such as (mixtures of) multi-variate Gaussians are inadequate for characterizing such data. This paper proposes a generative mixture-model approach to clustering directional data based on the von Mises-Fisher (vMF) distribution, which arises naturally for data distributed on the unit hypersphere. In particular, we derive and analyze two variants of the Expectation Maximization (EM) framework for estimating the mean and concentration parameters of this mixture. Numerical estimation of the concentration parameters is non-trivial in high dimensions since it involves functional inversion of ratios of Bessel functions. We also formulate two clustering algorithms corresponding to the variants of EM that we derive. Our approach provides a theoretical basis for the use of cosine similarity that has been widely employed by the information retrieval community, and obtains the spherical kmeans algorithm (kmeans with cosine similarity) as a special case of both variants. Empirical results on clustering of high-dimensional text and gene-expression data based on a mixture of vMF distributions show that the ability to estimate the concentration parameter for each vMF component, which is not present in existing approaches, yields superior results, especially for difficult clustering tasks in high-dimensional spaces.

ei

PDF [BibTex]

PDF [BibTex]


no image
Support Vector Machines for 3D Shape Processing

Steinke, F., Schölkopf, B., Blanz, V.

Computer Graphics Forum, 24(3, EUROGRAPHICS 2005):285-294, September 2005 (article)

Abstract
We propose statistical learning methods for approximating implicit surfaces and computing dense 3D deformation fields. Our approach is based on Support Vector (SV) Machines, which are state of the art in machine learning. It is straightforward to implement and computationally competitive; its parameters can be automatically set using standard machine learning methods. The surface approximation is based on a modified Support Vector regression. We present applications to 3D head reconstruction, including automatic removal of outliers and hole filling. In a second step, we build on our SV representation to compute dense 3D deformation fields between two objects. The fields are computed using a generalized SVMachine enforcing correspondence between the previously learned implicit SV object representations, as well as correspondences between feature points if such points are available. We apply the method to the morphing of 3D heads and other objects.

ei

PDF [BibTex]

PDF [BibTex]


no image
Rapid animal detection in natural scenes: Critical features are local

Wichmann, F., Rosas, P., Gegenfurtner, K.

Journal of Vision, 5(8):376, Fifth Annual Meeting of the Vision Sciences Society (VSS), September 2005 (poster)

Abstract
Thorpe et al (Nature 381, 1996) first showed how rapidly human observers are able to classify natural images as to whether they contain an animal or not. Whilst the basic result has been replicated using different response paradigms (yes-no versus forced-choice), modalities (eye movements versus button presses) as well as while measuring neurophysiological correlates (ERPs), it is still unclear which image features support this rapid categorisation. Recently Torralba and Oliva (Network: Computation in Neural Systems, 14, 2003) suggested that simple global image statistics can be used to predict seemingly complex decisions about the absence and/or presence of objects in natural scences. They show that the information contained in a small number (N=16) of spectral principal components (SPC)—principal component analysis (PCA) applied to the normalised power spectra of the images—is sufficient to achieve approximately 80% correct animal detection in natural scenes. Our goal was to test whether human observers make use of the power spectrum when rapidly classifying natural scenes. We measured our subjects' ability to detect animals in natural scenes as a function of presentation time (13 to 167 msec); images were immediately followed by a noise mask. In one condition we used the original images, in the other images whose power spectra were equalised (each power spectrum was set to the mean power spectrum over our ensemble of 1476 images). Thresholds for 75% correct animal detection were in the region of 20–30 msec for all observers, independent of the power spectrum of the images: this result makes it very unlikely that human observers make use of the global power spectrum. Taken together with the results of Gegenfurtner, Braun & Wichmann (Journal of Vision [abstract], 2003), showing the robustness of animal detection to global phase noise, we conclude that humans use local features, like edges and contours, in rapid animal detection.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Fast Protein Classification with Multiple Networks

Tsuda, K., Shin, H., Schölkopf, B.

Bioinformatics, 21(Suppl. 2):59-65, September 2005 (article)

Abstract
Support vector machines (SVM) have been successfully used to classify proteins into functional categories. Recently, to integrate multiple data sources, a semidefinite programming (SDP) based SVM method was introduced Lanckriet et al (2004). In SDP/SVM, multiple kernel matrices corresponding to each of data sources are combined with weights obtained by solving an SDP. However, when trying to apply SDP/SVM to large problems, the computational cost can become prohibitive, since both converting the data to a kernel matrix for the SVM and solving the SDP are time and memory demanding. Another application-specific drawback arises when some of the data sources are protein networks. A common method of converting the network to a kernel matrix is the diffusion kernel method, which has time complexity of O(n^3), and produces a dense matrix of size n x n. We propose an efficient method of protein classification using multiple protein networks. Available protein networks, such as a physical interaction network or a metabolic network, can be directly incorporated. Vectorial data can also be incorporated after conversion into a network by means of neighbor point connection. Similarly to the SDP/SVM method, the combination weights are obtained by convex optimization. Due to the sparsity of network edges, the computation time is nearly linear in the number of edges of the combined network. Additionally, the combination weights provide information useful for discarding noisy or irrelevant networks. Experiments on function prediction of 3588 yeast proteins show promising results: the computation time is enormously reduced, while the accuracy is still comparable to the SDP/SVM method.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Correlation of EEG spectral entropy with regional cerebral blood flow during sevoflurane and propofol anaesthesia

Maksimow, A., Kaisti, K., Aalto, S., Mäenpää, M., Jääskeläinen, S., Hinkka, S., Martens, SMM., Särkelä, M., Viertiö-Oja, H., Scheinin, H.

Anaesthesia, 60(9):862-869, September 2005 (article)

Abstract
ENTROPY index monitoring, based on spectral entropy of the electroencephalogram, is a promising new method to measure the depth of anaesthesia. We examined the association between spectral entropy and regional cerebral blood flow in healthy subjects anaesthetised with 2%, 3% and 4% end-expiratory concentrations of sevoflurane and 7.6, 12.5 and 19.0 microg.ml(-1) plasma drug concentrations of propofol. Spectral entropy from the frequency band 0.8-32 Hz was calculated and cerebral blood flow assessed using positron emission tomography and [(15)O]-labelled water at baseline and at each anaesthesia level. Both drugs induced significant reductions in spectral entropy and cortical and global cerebral blood flow. Midfrontal-central spectral entropy was associated with individual frontal and whole brain blood flow values across all conditions, suggesting that this novel measure of anaesthetic depth can depict global changes in neuronal activity induced by the drugs. The cortical areas of the most significant associations were remarkably similar for both drugs.

ei

DOI [BibTex]

DOI [BibTex]


no image
Iterative Kernel Principal Component Analysis for Image Modeling

Kim, K., Franz, M., Schölkopf, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9):1351-1366, September 2005 (article)

Abstract
In recent years, Kernel Principal Component Analysis (KPCA) has been suggested for various image processing tasks requiring an image model such as, e.g., denoising or compression. The original form of KPCA, however, can be only applied to strongly restricted image classes due to the limited number of training examples that can be processed. We therefore propose a new iterative method for performing KPCA, the Kernel Hebbian Algorithm which iteratively estimates the Kernel Principal Components with only linear order memory complexity. In our experiments, we compute models for complex image classes such as faces and natural images which require a large number of training examples. The resulting image models are tested in single-frame super-resolution and denoising applications. The KPCA model is not specifically tailored to these tasks; in fact, the same model can be used in super-resolution with variable input resolution, or denoising with unknown noise characteristics. In spite of this, both super-resolution a nd denoising performance are comparable to existing methods.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning an Interest Operator from Eye Movements

Kienzle, W., Franz, M., Wichmann, F., Schölkopf, B.

International Workshop on Bioinspired Information Processing (BIP 2005), 2005, pages: 1, September 2005 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Machine Learning Methods for Brain-Computer Interdaces

Lal, TN.

Biologische Kybernetik, University of Darmstadt, September 2005 (phdthesis)

ei

Web [BibTex]

Web [BibTex]


no image
Analyzing microarray data using quantitative association rules

Georgii, E., Richter, L., Rückert, U., Kramer, S.

Bioinformatics, 21(Suppl. 2):123-129, September 2005 (article)

Abstract
Motivation: We tackle the problem of finding regularities in microarray data. Various data mining tools, such as clustering, classification, Bayesian networks and association rules, have been applied so far to gain insight into gene-expression data. Association rule mining techniques used so far work on discretizations of the data and cannot account for cumulative effects. In this paper, we investigate the use of quantitative association rules that can operate directly on numeric data and represent cumulative effects of variables. Technically speaking, this type of quantitative association rules based on half-spaces can find non-axis-parallel regularities. Results: We performed a variety of experiments testing the utility of quantitative association rules for microarray data. First of all, the results should be statistically significant and robust against fluctuations in the data. Next, the approach should be scalable in the number of variables, which is important for such high-dimensional data. Finally, the rules should make sense biologically and be sufficiently different from rules found in regular association rule mining working with discretizations. In all of these dimensions, the proposed approach performed satisfactorily. Therefore, quantitative association rules based on half-spaces should be considered as a tool for the analysis of microarray gene-expression data.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
EEG-Based Mental Task Classification: Linear and Nonlinear Classification of Movement Imagery

Athena Akrami, A.

In EMBS, 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), September 1-4,, Shanghai, China (Accepted), September 2005 (inproceedings) Accepted

Abstract
Abstract—Use of EEG signals as a channel of communication between men and machines represents one of the current challenges in signal theory research. The principal element of such a communication system, known as a “Brain-Computer Interface,” is the interpretation of the EEG signals related to the characteristic parameters of brain electrical activity. Our goal in this work was extracting quantitative changes in the EEG due to movement imagination. Subject‘s EEG was recorded while he performed left or right hand movement imagination. Different feature sets extracted from EEG were used as inputs into linear, Neural Network and HMM classifiers for the purpose of imagery movement mental task classification. The results indicate that applying linear classifier to 5 frequency features of asymmetry signal produced from channel C3 and C4 can provide a very high classification accuracy percentage as a simple classifier with small number of features comparing to other feature sets.

ei

[BibTex]

[BibTex]


no image
Classification of natural scenes using global image statistics

Drewes, J., Wichmann, F., Gegenfurtner, K.

Journal of Vision, 5(8):602, Fifth Annual Meeting of the Vision Sciences Society (VSS), September 2005 (poster)

Abstract
The algorithmic classification of complex, natural scenes is generally considered a difficult task due to the large amount of information conveyed by natural images. Work by Simon Thorpe and colleagues showed that humans are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. This suggests that the relevant information for classification can be extracted at comparatively limited computational cost. One hypothesis is that global image statistics such as the amplitude spectrum could underly fast image classification (Johnson & Olshausen, Journal of Vision, 2003; Torralba & Oliva, Network: Comput. Neural Syst., 2003). We used linear discriminant analysis to classify a set of 11.000 images into animal and non-animal images. After applying a DFT to the image, we put the Fourier spectrum into bins (8 orientations with 6 frequency bands each). Using all bins, classification performance on the Fourier spectrum reached 70%. However, performance was similar (67%) when only the high spatial frequency information was used and decreased steadily at lower spatial frequencies, reaching a minimum (50%) for the low spatial frequency information. Similar results were obtained when all bins were used on spatially filtered images. A detailed analysis of the classification weights showed that a relatively high level of performance (67%) could also be obtained when only 2 bins were used, namely the vertical and horizontal orientation at the highest spatial frequency band. Our results show that in the absence of sophisticated machine learning techniques, animal detection in natural scenes is limited to rather modest levels of performance, far below those of human observers. If limiting oneself to global image statistics such as the DFT then mostly information at the highest spatial frequencies is useful for the task. This is analogous to the results obtained with human observers on filtered images (Kirchner et al, VSS 2004).

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Large Margin Methods for Structured and Interdependent Output Variables

Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.

Journal of Machine Learning Research, 6, pages: 1453-1484, September 2005 (article)

Abstract
Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary issue of designing classification algorithms that can deal with more complex outputs, such as trees, sequences, or sets. More generally, we consider problems involving multiple dependent output variables, structured output spaces, and classification problems with class attributes. In order to accomplish this, we propose to appropriately generalize the well-known notion of a separation margin and derive a corresponding maximum-margin formulation. While this leads to a quadratic program with a potentially prohibitive, i.e. exponential, number of constraints, we present a cutting plane algorithm that solves the optimization problem in polynomial time for a large class of problems. The proposed method has important applications in areas such as computational biology, natural language processing, information retrieval/extraction, and optical character recognition. Experiments from various domains involving different types of output spaces emphasize the breadth and generality of our approach.

ei

PDF [BibTex]

PDF [BibTex]


Thumb xl embs05
Inferring attentional state and kinematics from motor cortical firing rates

Wood, F., Prabhat, , Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 1544-1547, September 2005 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Contact Location Display for Haptic Perception of Curvature and Object Motion

Provancher, W. R., Cutkosky, M. R., Kuchenbecker, K. J., Niemeyer, G.

International Journal of Robotics Research, 24(9):691-702, sep 2005 (article)

hi

[BibTex]

[BibTex]


Thumb xl arma
Motor cortical decoding using an autoregressive moving average model

Fisher, J., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 1469-1472, September 2005 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Gene Expression Profiling of Serum- and Interleukin-1beta-Stimulated Primary Human Adult Articular Chondrocytes - A Molecular Analysis Based on Chondrocytes Isolated from One Donor

Aigner, T., McKenna, L., Zien, A., Fan, Z., Gebhard, P., Zimmer, R.

Cytokine, 31(3):227-240, August 2005 (article)

Abstract
In order to understand the cellular disease mechanisms of osteoarthritic cartilage degeneration it is of primary importance to understand both the anabolic and the catabolic processes going on in parallel in the diseased tissue. In this study, we have applied cDNA-array technology (Clontech) to study gene expression patterns of primary human normal adult articular chondrocytes isolated from one donor cultured under anabolic (serum) and catabolic (IL-1beta) conditions. Significant differences between the different in vitro cultures tested were detected. Overall, serum and IL-1beta significantly altered gene expression levels of 102 and 79 genes, respectively. IL-1beta stimulated the matrix metalloproteinases-1, -3, and -13 as well as members of its intracellular signaling cascade, whereas serum increased the expression of many cartilage matrix genes. Comparative gene expression analysis with previously published in vivo data (normal and osteoarthritic cartilage) showed significant differences of all in vitro s timulations compared to the changes detected in osteoarthritic cartilage in vivo. This investigation allowed us to characterize gene expression profiles of two classical anabolic and catabolic stimuli of human adult articular chondrocytes in vitro. No in vitro model appeared to be adequate to study overall gene expression alterations in osteoarthritic cartilage. Serum stimulated in vitro cultures largely reflected the results that were only consistent with the anabolic activation seen in osteoarthritic chondrocytes. In contrast, IL-1beta did not appear to be a good model for mimicking catabolic gene alterations in degenerating chondrocytes.

ei

Web [BibTex]


no image
A Combinatorial View of Graph Laplacians

Huang, J.

(144), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2005 (techreport)

Abstract
Discussions about different graph Laplacian, mainly normalized and unnormalized versions of graph Laplacian, have been ardent with respect to various methods in clustering and graph based semi-supervised learning. Previous research on graph Laplacians investigated their convergence properties to Laplacian operators on continuous manifolds. There is still no strong proof on convergence for the normalized Laplacian. In this paper, we analyze different variants of graph Laplacians directly from the ways solving the original graph partitioning problem. The graph partitioning problem is a well-known combinatorial NP hard optimization problem. The spectral solutions provide evidence that normalized Laplacian encodes more reasonable considerations for graph partitioning. We also provide some examples to show their differences.

ei

[BibTex]

[BibTex]


no image
Phenotypic characterization of chondrosarcoma-derived cell lines

Schorle, C., Finger, F., Zien, A., Block, J., Gebhard, P., Aigner, T.

Cancer Letters, 226(2):143-154, August 2005 (article)

Abstract
Gene expression profiling of three chondrosarcoma derived cell lines (AD, SM, 105KC) showed an increased proliferative activity and a reduced expression of chondrocytic-typical matrix products compared to primary chondrocytes. The incapability to maintain an adequate matrix synthesis as well as a notable proliferative activity at the same time is comparable to neoplastic chondrosarcoma cells in vivo which cease largely cartilage matrix formation as soon as their proliferative activity increases. Thus, the investigated cell lines are of limited value as substitute of primary chondrocytes but might have a much higher potential to investigate the behavior of neoplastic chondrocytes, i.e. chondrosarcoma biology.

ei

Web [BibTex]

Web [BibTex]


no image
Beyond Pairwise Classification and Clustering Using Hypergraphs

Zhou, D., Huang, J., Schölkopf, B.

(143), Max Planck Institute for Biological Cybernetics, August 2005 (techreport)

Abstract
In many applications, relationships among objects of interest are more complex than pairwise. Simply approximating complex relationships as pairwise ones can lead to loss of information. An alternative for these applications is to analyze complex relationships among data directly, without the need to first represent the complex relationships into pairwise ones. A natural way to describe complex relationships is to use hypergraphs. A hypergraph is a graph in which edges can connect more than two vertices. Thus we consider learning from a hypergraph, and develop a general framework which is applicable to classification and clustering for complex relational data. We have applied our framework to real-world web classification problems and obtained encouraging results.

ei

PDF [BibTex]

PDF [BibTex]


no image
Local Rademacher Complexities

Bartlett, P., Bousquet, O., Mendelson, S.

The Annals of Statistics, 33(4):1497-1537, August 2005 (article)

Abstract
We propose new bounds on the error of learning algorithms in terms of a data-dependent notion of complexity. The estimates we establish give optimal rates and are based on a local and empirical version of Rademacher averages, in the sense that the Rademacher averages are computed from the data, on a subset of functions with small empirical error. We present some applications to classification and prediction with convex function classes, and with kernel classes in particular.

ei

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]


no image
Building Sparse Large Margin Classifiers

Wu, M., Schölkopf, B., BakIr, G.

In Proceedings of the 22nd International Conference on Machine Learning, pages: 996-1003, (Editors: L De Raedt and S Wrobel ), ACM, New York, NY, USA, ICML , August 2005 (inproceedings)

Abstract
This paper presents an approach to build Sparse Large Margin Classifiers (SLMC) by adding one more constraint to the standard Support Vector Machine (SVM) training problem. The added constraint explicitly controls the sparseness of the classifier and an approach is provided to solve the formulated problem. When considering the dual of this problem, it can be seen that building an SLMC is equivalent to constructing an SVM with a modified kernel function. Further analysis of this kernel function indicates that the proposed approach essentially finds a discriminating subspace that can be spanned by a small number of vectors, and in this subspace different classes of data are linearly well separated. Experimental results over several classification benchmarks show that in most cases the proposed approach outperforms the state-of-art sparse learning algorithms.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Building Sparse Large Margin Classifiers

Wu, M., Schölkopf, B., BakIr, G.

The 22nd International Conference on Machine Learning (ICML), August 2005 (talk)

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning from Labeled and Unlabeled Data on a Directed Graph

Zhou, D., Huang, J., Schölkopf, B.

In Proceedings of the 22nd International Conference on Machine Learning, pages: 1041 -1048, (Editors: L De Raedt and S Wrobel), ACM, New York, NY, USA, ICML, August 2005 (inproceedings)

Abstract
We propose a general framework for learning from labeled and unlabeled data on a directed graph in which the structure of the graph including the directionality of the edges is considered. The time complexity of the algorithm derived from this framework is nearly linear due to recently developed numerical techniques. In the absence of labeled instances, this framework can be utilized as a spectral clustering method for directed graphs, which generalizes the spectral clustering approach for undirected graphs. We have applied our framework to real-world web classification problems and obtained encouraging results.

ei

PostScript PDF [BibTex]

PostScript PDF [BibTex]


no image
Learning from Labeled and Unlabeled Data on a Directed Graph

Zhou, D.

The 22nd International Conference on Machine Learning, August 2005 (talk)

Abstract
We propose a general framework for learning from labeled and unlabeled data on a directed graph in which the structure of the graph including the directionality of the edges is considered. The time complexity of the algorithm derived from this framework is nearly linear due to recently developed numerical techniques. In the absence of labeled instances, this framework can be utilized as a spectral clustering method for directed graphs, which generalizes the spectral clustering approach for undirected graphs. We have applied our framework to real-world web classification problems and obtained encouraging results.

ei

PDF [BibTex]

PDF [BibTex]


no image
A unifying methodology for the control of robotic systems

Peters, J., Mistry, M., Udwadia, F., Cory, R., Nakanishi, J., Schaal, S.

In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), pages: 1824-1831, IEEE Operations Center, Piscataway, NJ, USA, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), August 2005 (inproceedings)

Abstract
Recently, R. E. Udwadia (2003) suggested to derive tracking controllers for mechanical systems using a generalization of Gauss‘ principle of least constraint. This method allows us to reformulate control problems as a special class of optimal control. We take this line of reasoning one step further and demonstrate that well-known and also several novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. We believe that the suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Regularization on Discrete Spaces

Zhou, D., Schölkopf, B.

In Pattern Recognition, Lecture Notes in Computer Science, Vol. 3663, pages: 361-368, (Editors: WG Kropatsch and R Sablatnig and A Hanbury), Springer, Berlin, Germany, 27th DAGM Symposium, August 2005 (inproceedings)

Abstract
We consider the classification problem on a finite set of objects. Some of them are labeled, and the task is to predict the labels of the remaining unlabeled ones. Such an estimation problem is generally referred to as transductive inference. It is well-known that many meaningful inductive or supervised methods can be derived from a regularization framework, which minimizes a loss function plus a regularization term. In the same spirit, we propose a general discrete regularization framework defined on finite object sets, which can be thought of as the discrete analogue of classical regularization theory. A family of transductive inference schemes is then systemically derived from the framework, including our earlier algorithm for transductive inference, with which we obtained encouraging results on many practical classification problems. The discrete regularization framework is built on the discrete analysis and geometry developed by ourselves, in which a number of discrete differential operators of various orders are constructed, which can be thought of as the discrete analogue of their counterparts in the continuous case.

ei

PDF PostScript DOI [BibTex]

PDF PostScript DOI [BibTex]


no image
Large Margin Non-Linear Embedding

Zien, A., Candela, J.

In ICML 2005, pages: 1065-1072, (Editors: De Raedt, L. , S. Wrobel), ACM Press, New York, NY, USA, 22nd International Conference on Machine Learning, August 2005 (inproceedings)

Abstract
It is common in classification methods to first place data in a vector space and then learn decision boundaries. We propose reversing that process: for fixed decision boundaries, we ``learn‘‘ the location of the data. This way we (i) do not need a metric (or even stronger structure) -- pairwise dissimilarities suffice; and additionally (ii) produce low-dimensional embeddings that can be analyzed visually. We achieve this by combining an entropy-based embedding method with an entropy-based version of semi-supervised logistic regression. We present results for clustering and semi-supervised classification.

ei

PDF PostScript Web DOI [BibTex]

PDF PostScript Web DOI [BibTex]


no image
Liver Perfusion using Level Set Methods

Nowozin, S.

Biologische Kybernetik, Shanghai JiaoTong University, Shanghai, China, July 2005 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Face Detection: Efficient and Rank Deficient

Kienzle, W., BakIr, G., Franz, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 673-680, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
This paper proposes a method for computing fast approximations to support vector decision functions in the field of object detection. In the present approach we are building on an existing algorithm where the set of support vectors is replaced by a smaller, so-called reduced set of synthesized input space points. In contrast to the existing method that finds the reduced set via unconstrained optimization, we impose a structural constraint on the synthetic points such that the resulting approximations can be evaluated via separable filters. For applications that require scanning an entire image, this decreases the computational complexity of a scan by a significant amount. We present experimental results on a standard face detection database.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Inlier-based ICA with an application to superimposed images

Meinecke, F., Harmeling, S., Müller, K.

International Journal of Imaging Systems and Technology, 15(1):48-55, July 2005 (article)

Abstract
This paper proposes a new independent component analysis (ICA) method which is able to unmix overcomplete mixtures of sparce or structured signals like speech, music or images. Furthermore, the method is designed to be robust against outliers, which is a favorable feature for ICA algorithms since most of them are extremely sensitive to outliers. Our approach is based on a simple outlier index. However, instead of robustifying an existing algorithm by some outlier rejection technique we show how this index can be used directly to solve the ICA problem for super-Gaussian sources. The resulting inlier-based ICA (IBICA) is outlier-robust by construction and can be used for standard ICA as well as for overcomplete ICA (i.e. more source signals than observed signals).

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Triangle Fixing Algorithms for the Metric Nearness Problem

Dhillon, I., Sra, S., Tropp, J.

In Advances in Neural Information Processing Systems 17, pages: 361-368, (Editors: Saul, L.K. , Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
Various problems in machine learning, databases, and statistics involve pairwise distances among a set of objects. It is often desirable for these distances to satisfy the properties of a metric, especially the triangle inequality. Applications where metric data is useful include clustering, classification, metric-based indexing, and approximation algorithms for various graph problems. This paper presents the Metric Nearness Problem: Given a dissimilarity matrix, find the "nearest" matrix of distances that satisfy the triangle inequalities. For lp nearness measures, this paper develops efficient triangle fixing algorithms that compute globally optimal solutions by exploiting the inherent structure of the problem. Empirically, the algorithms have time and storage costs that are linear in the number of triangle constraints. The methods can also be easily parallelized for additional speed.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Methods Towards Invasive Human Brain Computer Interfaces

Lal, T., Hinterberger, T., Widman, G., Schröder, M., Hill, J., Rosenstiel, W., Elger, C., Schölkopf, B., Birbaumer, N.

In Advances in Neural Information Processing Systems 17, pages: 737-744, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
During the last ten years there has been growing interest in the development of Brain Computer Interfaces (BCIs). The field has mainly been driven by the needs of completely paralyzed patients to communicate. With a few exceptions, most human BCIs are based on extracranial electroencephalography (EEG). However, reported bit rates are still low. One reason for this is the low signal-to-noise ratio of the EEG. We are currently investigating if BCIs based on electrocorticography (ECoG) are a viable alternative. In this paper we present the method and examples of intracranial EEG recordings of three epilepsy patients with electrode grids placed on the motor cortex. The patients were asked to repeatedly imagine movements of two kinds, e.g., tongue or finger movements. We analyze the classifiability of the data using Support Vector Machines (SVMs) and Recursive Channel Elimination (RCE).

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Machine Learning Approach to Conjoint Analysis

Chapelle, O., Harchaoui, Z.

In Advances in Neural Information Processing Systems 17, pages: 257-264, (Editors: Saul, L.K. , Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
Choice-based conjoint analysis builds models of consumers preferences over products with answers gathered in questionnaires. Our main goal is to bring tools from the machine learning community to solve more efficiently this problem. Thus, we propose two algorithms to estimate quickly and accurately consumer preferences.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
An Auditory Paradigm for Brain-Computer Interfaces

Hill, N., Lal, T., Bierig, K., Birbaumer, N., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 569-576, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
Motivated by the particular problems involved in communicating with "locked-in" paralysed patients, we aim to develop a brain-computer interface that uses auditory stimuli. We describe a paradigm that allows a user to make a binary decision by focusing attention on one of two concurrent auditory stimulus sequences. Using Support Vector Machine classification and Recursive Channel Elimination on the independent components of averaged event-related potentials, we show that an untrained user's EEG data can be classified with an encouragingly high level of accuracy. This suggests that it is possible for users to modulate EEG signals in a single trial by the conscious direction of attention, well enough to be useful in BCI.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Matrix Exponential Gradient Updates for On-line Learning and Bregman Projection

Tsuda, K., Rätsch, G., Warmuth, M.

In Advances in Neural Information Processing Systems 17, pages: 1425-1432, (Editors: Saul, L.K. , Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
We address the problem of learning a symmetric positive definite matrix. The central issue is to design parameter updates that preserve positive definiteness. Our updates are motivated with the von Neumann divergence. Rather than treating the most general case, we focus on two key applications that exemplify our methods: On-line learning with a simple square loss and finding a symmetric positive definite matrix subject to symmetric linear constraints. The updates generalize the Exponentiated Gradient (EG) update and AdaBoost, respectively: the parameter is now a symmetric positive definite matrix of trace one instead of a probability vector (which in this context is a diagonal positive definite matrix with trace one). The generalized updates use matrix logarithms and exponentials to preserve positive definiteness. Most importantly, we show how the analysis of each algorithm generalizes to the non-diagonal case. We apply both new algorithms, called the Matrix Exponentiated Gradient (MEG) update and DefiniteBoost, to learn a kernel matrix from distance measurements.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning the Kernel with Hyperkernels

Ong, CS., Smola, A., Williamson, R.

Journal of Machine Learning Research, 6, pages: 1043-1071, July 2005 (article)

Abstract
This paper addresses the problem of choosing a kernel suitable for estimation with a Support Vector Machine, hence further automating machine learning. This goal is achieved by defining a Reproducing Kernel Hilbert Space on the space of kernels itself. Such a formulation leads to a statistical estimation problem similar to the problem of minimizing a regularized risk functional. We state the equivalent representer theorem for the choice of kernels and present a semidefinite programming formulation of the resulting optimization problem. Several recipes for constructing hyperkernels are provided, as well as the details of common machine learning problems. Experimental results for classification, regression and novelty detection on UCI data show the feasibility of our approach.

ei

PDF [BibTex]

PDF [BibTex]


no image
Breaking SVM Complexity with Cross-Training

Bakir, G., Bottou, L., Weston, J.

In Advances in Neural Information Processing Systems 17, pages: 81-88, (Editors: Saul, L.K. , Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
We propose an algorithm for selectively removing examples from the training set using probabilistic estimates related to editing algorithms (Devijver and Kittler82). The procedure creates a separable distribution of training examples with minimal impact on the decision boundary position. It breaks the linear dependency between the number of SVs and the number of training examples, and sharply reduces the complexity of SVMs during both the training and prediction stages.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Implicit Wiener series for higher-order image analysis

Franz, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 465-472, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
The computation of classical higher-order statistics such as higher-order moments or spectra is difficult for images due to the huge number of terms to be estimated and interpreted. We propose an alternative approach in which multiplicative pixel interactions are described by a series of Wiener functionals. Since the functionals are estimated implicitly via polynomial kernels, the combinatorial explosion associated with the classical higher-order statistics is avoided. First results show that image structures such as lines or corners can be predicted correctly, and that pixel interactions up to the order of five play an important role in natural images.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Limits of Spectral Clustering

von Luxburg, U., Bousquet, O., Belkin, M.

In Advances in Neural Information Processing Systems 17, pages: 857-864, (Editors: Saul, L. K., Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
An important aspect of clustering algorithms is whether the partitions constructed on finite samples converge to a useful clustering of the whole data space as the sample size increases. This paper investigates this question for normalized and unnormalized versions of the popular spectral clustering algorithm. Surprisingly, the convergence of unnormalized spectral clustering is more difficult to handle than the normalized case. Even though recently some first results on the convergence of normalized spectral clustering have been obtained, for the unnormalized case we have to develop a completely new approach combining tools from numerical integration, spectral and perturbation theory, and probability. It turns out that while in the normalized case, spectral clustering usually converges to a nice partition of the data space, in the unnormalized case the same only holds under strong additional assumptions which are not always satisfied. We conclude that our analysis gives strong evidence for the superiority of normalized spectral clustering. It also provides a basis for future exploration of other Laplacian-based methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Semi-supervised Learning on Directed Graphs

Zhou, D., Schölkopf, B., Hofmann, T.

In Advances in Neural Information Processing Systems 17, pages: 1633-1640, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
Given a directed graph in which some of the nodes are labeled, we investigate the question of how to exploit the link structure of the graph to infer the labels of the remaining unlabeled nodes. To that extent we propose a regularization framework for functions defined over nodes of a directed graph that forces the classification function to change slowly on densely linked subgraphs. A powerful, yet computationally simple classification algorithm is derived within the proposed framework. The experimental evaluation on real-world Web classification problems demonstrates encouraging results that validate our approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Machine Learning Applied to Perception: Decision Images for Classification

Wichmann, F., Graf, A., Simoncelli, E., Bülthoff, H., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 1489-1496, (Editors: LK, Saul and Y, Weiss and L, Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
We study gender discrimination of human faces using a combination of psychophysical classification and discrimination experiments together with methods from machine learning. We reduce the dimensionality of a set of face images using principal component analysis, and then train a set of linear classifiers on this reduced representation (linear support vector machines (SVMs), relevance vector machines (RVMs), Fisher linear discriminant (FLD), and prototype (prot) classifiers) using human classification data. Because we combine a linear preprocessor with linear classifiers, the entire system acts as a linear classifier, allowing us to visualise the decision-image corresponding to the normal vector of the separating hyperplanes (SH) of each classifier. We predict that the female-to-maleness transition along the normal vector for classifiers closely mimicking human classification (SVM and RVM 1) should be faster than the transition along any other direction. A psychophysical discrimination experiment using the decision images as stimuli is consistent with this prediction.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Splines with non positive kernels

Canu, S., Ong, CS., Mary, X.

In 5th International ISAAC Congress, pages: 1-10, (Editors: Begehr, H. G.W., F. Nicolosi), World Scientific, Singapore, 5th International ISAAC Congress, July 2005 (inproceedings)

Abstract
Non parametric regressions methods can be presented in two main clusters. The one of smoothing splines methods requiring positive kernels and the other one known as Nonparametric Kernel Regression allowing the use of non positive kernels such as the Epanechnikov kernel. We propose a generalization of the smoothing spline method to include kernels which are still symmetric but not positive semi definite (they are called indefinite). The general relationship between smoothing spline, Reproducing Kernel Hilbert Spaces and positive kernels no longer exists with indefinite kernel. Instead they are associated with functional spaces called Reproducing Kernel Krein Spaces (RKKS) embedded with an indefinite inner product and thus not directly associated with a norm. Smothing splines in RKKS have many of the interesting properties of splines in RKHS, such as orthogon ality, projection, representer theorem and generalization bounds. We show that smoothing splines can be defined in RKKS as the regularized solution of the interpolation problem. Since no norm is available in a RKKS, Tikhonov regularization cannot be defined. Instead, we proposed to use iterative methods of conjugate gradient type with early stopping as regularization mechanism. Several iterative algorithms were collected which can be used to solve the optimization problems associated with learning in indefinite spaces. Some preliminary experiments with indefinite kernels for spline smoothing are reported revealing the computational efficiency of the approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel Methods for Implicit Surface Modeling

Schölkopf, B., Giesen, J., Spalinger, S.

In Advances in Neural Information Processing Systems 17, pages: 1193-1200, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
We describe methods for computing an implicit model of a hypersurface that is given only by a finite sampling. The methods work by mapping the sample points into a reproducing kernel Hilbert space and then determining regions in terms of hyperplanes.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Comparative evaluation of Independent Components Analysis algorithms for isolating target-relevant information in brain-signal classification

Hill, N., Schröder, M., Lal, T., Schölkopf, B.

Brain-Computer Interface Technology, 3, pages: 95, June 2005 (poster)

ei

PDF [BibTex]


no image
Machine-Learning Approaches to BCI in Tübingen

Bensch, M., Bogdan, M., Hill, N., Lal, T., Rosenstiel, W., Schölkopf, B., Schröder, M.

Brain-Computer Interface Technology, June 2005, Talk given by NJH. (talk)

ei

[BibTex]

[BibTex]