Header logo is


2018


no image
Learning Independent Causal Mechanisms

Parascandolo, G., Kilbertus, N., Rojas-Carulla, M., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 4033-4041, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, 2018 (conference)

ei

link (url) [BibTex]

2018


link (url) [BibTex]


Thumb xl publication alife 2018
Systematic self-exploration of behaviors for robots in a dynamical systems framework

Pinneri, C., Martius, G.

In Proc. Artificial Life XI, pages: 319-326, MIT Press, Cambridge, MA, 2018 (inproceedings)

Abstract
One of the challenges of this century is to understand the neural mechanisms behind cognitive control and learning. Recent investigations propose biologically plausible synaptic mechanisms for self-organizing controllers, in the spirit of Hebbian learning. In particular, differential extrinsic plasticity (DEP) [Der and Martius, PNAS 2015], has proven to enable embodied agents to self-organize their individual sensorimotor development, and generate highly coordinated behaviors during their interaction with the environment. These behaviors are attractors of a dynamical system. In this paper, we use the DEP rule to generate attractors and we combine it with a “repelling potential” which allows the system to actively explore all its attractor behaviors in a systematic way. With a view to a self-determined exploration of goal-free behaviors, our framework enables switching between different motion patterns in an autonomous and sequential fashion. Our algorithm is able to recover all the attractor behaviors in a toy system and it is also effective in two simulated environments. A spherical robot discovers all its major rolling modes and a hexapod robot learns to locomote in 50 different ways in 30min.

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Nonstationary GANs: Analysis as Nonautonomous Dynamical Systems

Mehrjou, A., Schölkopf, B.

Workshop on Theoretical Foundations and Applications of Deep Generative Models at ICML, 2018 (conference)

ei

PDF [BibTex]

PDF [BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

7th AREADNE Conference on Research in Encoding and Decoding of Neural Ensembles, 2018 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The Unreasonable Effectiveness of Texture Transfer for Single Image Super-resolution

Gondal, M. W., Schölkopf, B., Hirsch, M.

Workshop and Challenge on Perceptual Image Restoration and Manipulation (PIRM) at the 15th European Conference on Computer Vision (ECCV), 2018 (conference)

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Learning Invariances using the Marginal Likelihood

van der Wilk, M., Bauer, M., John, S. T., Hensman, J.

32th Annual Conference on Neural Information Processing Systems (NIPS), 2018 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Case series: Slowing alpha rhythm in late-stage ALS patients

Hohmann, M. R., Fomina, T., Jayaram, V., Emde, T., Just, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

Clinical Neurophysiology, 129(2):406-408, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling

Sosic, A., Rueckert, E., Peters, J., Zoubir, A., Koeppl, H.

Journal of Machine Learning Research, 2018 (article) Accepted

ei

[BibTex]

[BibTex]


no image
Grip Stabilization of Novel Objects using Slip Prediction

Veiga, F., Peters, J., Hermans, T.

IEEE Transactions on Haptics, 2018 (article) In press

ei

DOI [BibTex]

DOI [BibTex]


no image
Measures of distortion for machine learning

Vankadara, L., von Luxburg, U.

In Proceedings Neural Information Processing Systems, Neural Information Processing Systems (NIPS 2018) , 2018 (inproceedings)

slt

Project Page [BibTex]

Project Page [BibTex]


no image
Wasserstein Auto-Encoders: Latent Dimensionality and Random Encoders

Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.

Workshop at the 6th International Conference on Learning Representations (ICLR), 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Differentially Private Kernel Two-Sample Test

Raj*, A., Law*, L., Sejdinovic*, D., Park, M.

2018, *equal contribution (conference) Submitted

ei

[BibTex]

[BibTex]


no image
Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis—implications for brain–computer interfacing

Kellmeyer, P., Grosse-Wentrup, M., Schulze-Bonhage, A., Ziemann, U., Ball, T.

Journal of Neural Engineering, 15(4):041003, IOP Publishing, 2018 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl lcsslip
Beyond Basins of Attraction: Evaluating Robustness of Natural Dynamics

Steve Heim, , Sproewitz, A.

arXiv preprint arXiv:1806.08081, 2018 (unpublished)

Abstract
It is commonly accepted that properly designing a system to exhibit favorable natural dynamics can greatly simplify designing or learning the control policy. It is however still unclear what constitutes favorable natural dynamics, and how to quantify its effect. Most studies of simple walking and running models have focused on the basins of attraction of passive limit-cycles, and the notion of self-stability. We emphasize instead the importance of stepping beyond basins of attraction. We show an approach based on viability theory to quantify robustness, valid for the family of all robust control policies. This allows us to evaluate the robustness inherent to the natural dynamics before designing the control policy or specifying a control objective. We illustrate this approach on simple spring mass models of running and show previously unexplored advantages to using a nonlinear leg stiffness. We believe designing robots with robust natural dynamics is particularly important for enabling learning control policies directly in hardware.

dlg

arXiv preprint arXiv:1806.08081 link (url) Project Page [BibTex]


no image
Leveraging the Crowd to Detect and Reduce the Spread of Fake News and Misinformation

Kim, J., Tabibian, B., Oh, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM), pages: 324-332, (Editors: Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek), ACM, 2018 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning

Eysenbach, B., Gu, S., Ibarz, J., Levine, S.

6th International Conference on Learning Representations (ICLR), 2018 (conference)

ei

Videos link (url) [BibTex]

Videos link (url) [BibTex]


Thumb xl yanzhang clustering
Temporal Human Action Segmentation via Dynamic Clustering

Zhang, Y., Sun, H., Tang, S., Neumann, H.

arXiv preprint arXiv:1803.05790, 2018 (article)

Abstract
We present an effective dynamic clustering algorithm for the task of temporal human action segmentation, which has comprehensive applications such as robotics, motion analysis, and patient monitoring. Our proposed algorithm is unsupervised, fast, generic to process various types of features, and applica- ble in both the online and offline settings. We perform extensive experiments of processing data streams, and show that our algorithm achieves the state-of- the-art results for both online and offline settings.

ps

link (url) [BibTex]

link (url) [BibTex]


no image
Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test

Babbar, R., Heni, M., Peter, A., Hrabě de Angelis, M., Häring, H., Fritsche, A., Preissl, H., Schölkopf, B., Wagner, R.

Frontiers in Endocrinology, 9, pages: 82, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl 2018 prd
Assessing Generative Models via Precision and Recall

Sajjadi, M. S. M., Bachem, O., Lucic, M., Bousquet, O., Gelly, S.

32th Annual Conference on Neural Information Processing Systems (NIPS), 2018 (conference) Accepted

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Invariant Models for Causal Transfer Learning

Rojas-Carulla, M., Schölkopf, B., Turner, R., Peters, J.

Journal of Machine Learning Research, 2018 (article) Accepted

ei

[BibTex]

[BibTex]


no image
Decision-Theoretic Meta-Learning: Versatile and Efficient Amortization of Few-Shot Learning

Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., Turner, R. E.

2018 (conference) Submitted

ei

arXiv [BibTex]

arXiv [BibTex]


Thumb xl 2018 tgan
Tempered Adversarial Networks

Sajjadi, M. S. M., Parascandolo, G., Mehrjou, A., Schölkopf, B.

Workshop at the 6th International Conference on Learning Representations (ICLR), 2018 (conference)

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models

Neitz, A., Parascandolo, G., Bauer, S., Schölkopf, B.

32th Annual Conference on Neural Information Processing Systems (NIPS), 2018 (conference) Accepted

ei

arXiv [BibTex]

arXiv [BibTex]


no image
MOABB: Trustworthy algorithm benchmarking for BCIs

Jayaram, V., Barachant, A.

Journal of Neural Engineering, 15(6):066011, 2018 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Robust and Cheap 3D Haptic Sensation using Deformation Patterns and Machine Learning

Huanbo Sun, Georg Martius

In IEEE-RAS International Conference on Humanoid Robots (Humanoids 2018), 2018, to appear (inproceedings)

[BibTex]

[BibTex]


no image
f-Divergence constrained policy improvement

Belousov, B., Peters, J.

Journal of Machine Learning Research, 2018 (article) Submitted

ei

[BibTex]

[BibTex]


no image
Practical Methods for Graph Two-Sample Testing

Ghoshdastidar, D., von Luxburg, U.

In Proceedings Neural Information Processing Systems, Neural Information Processing Systems (NIPS 2018) , 2018 (inproceedings)

slt

Project Page [BibTex]

Project Page [BibTex]


no image
Learning Disentangled Representations with Wasserstein Auto-Encoders

Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.

Workshop at the 6th International Conference on Learning Representations (ICLR), 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Phylogenetic convolutional neural networks in metagenomics

Fioravanti*, D., Giarratano*, Y., Maggio*, V., Agostinelli, C., Chierici, M., Jurman, G., Furlanello, C.

BMC Bioinformatics, 19(2):49 pages, 2018, *equal contribution (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Sobolev Descent

Mroueh, Y., Sercu, T., Raj, A.

2018 (conference) Submitted

ei

[BibTex]

[BibTex]


no image
Food specific inhibitory control under negative mood in binge-eating disorder: Evidence from a multimethod approach

Leehr, E. J., Schag, K., Dresler, T., Grosse-Wentrup, M., Hautzinger, M., Fallgatter, A. J., Zipfel, S., Giel, K. E., Ehlis, A.

International Journal of Eating Disorders, 51(2):112-123, Wiley Online Library, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl picture8
Morphological intelligence counters foot slipping in the desert locust and dynamic robots

Woodward, M. A., Sitti, M.

Proceedings of the National Academy of Sciences, 115, 2018 (article)

Abstract
During dynamic terrestrial locomotion, animals use complex multifunctional feet to extract friction from the environment. However, whether roboticists assume sufficient surface friction for locomotion or actively compensate for slipping, they use relatively simple point-contact feet. We seek to understand and extract the morphological adaptations of animal feet that contribute to enhancing friction on diverse surfaces, such as the desert locust (Schistocerca gregaria) [Bennet-Clark HC (1975) J Exp Biol 63:53–83], which has both wet adhesive pads and spines. A buckling region in their knee to accommodate slipping [Bayley TG, Sutton GP, Burrows M (2012) J Exp Biol 215:1151–1161], slow nerve conduction velocity (0.5–3 m/s) [Pearson KG, Stein RB, Malhotra SK (1970) J Exp Biol 53:299–316], and an ecological pressure to enhance jumping performance for survival [Hawlena D, Kress H, Dufresne ER, Schmitz OJ (2011) Funct Ecol 25:279–288] further suggest that the locust operates near the limits of its surface friction, but without sufficient time to actively control its feet. Therefore, all surface adaptation must be through passive mechanics (morphological intelligence), which are unknown. Here, we report the slipping behavior, dynamic attachment, passive mechanics, and interplay between the spines and adhesive pads, studied through both biological and robotic experiments, which contribute to the locust’s ability to jump robustly from diverse surfaces. We found slipping to be surface-dependent and common (e.g., wood 1.32 ± 1.19 slips per jump), yet the morphological intelligence of the feet produces a significant chance to reengage the surface (e.g., wood 1.10 ± 1.13 reengagements per jump). Additionally, a discovered noncontact-type jump, further studied robotically, broadens the applicability of the morphological adaptations to both static and dynamic attachment.

pi

DOI Project Page [BibTex]


no image
Linking imaging to omics utilizing image-guided tissue extraction

Disselhorst, J. A., Krueger, M. A., Ud-Dean, S. M. M., Bezrukov, I., Jarboui, M. A., Trautwein, C., Traube, A., Spindler, C., Cotton, J. M., Leibfritz, D., Pichler, B. J.

Proceedings of the National Academy of Sciences, 115(13):E2980-E2987, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Generalized Score Functions for Causal Discovery

Huang, B., Zhang, K., Lin, Y., Schölkopf, B., C., G.

Proceedings of the 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages: 1551-1560, (Editors: Yike Guo and Faisal Farooq), ACM, 2018 (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Parallel and functionally segregated processing of task phase and conscious content in the prefrontal cortex

Kapoor, V., Besserve, M., Logothetis, N. K., Panagiotaropoulos, T. I.

Communications Biology, 2018 (article) Accepted

ei

[BibTex]

[BibTex]


no image
Probabilistic Approaches to Stochastic Optimization

Mahsereci, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei pn

link (url) [BibTex]

link (url) [BibTex]


no image
Differentially Private Database Release via Kernel Mean Embeddings

Balog, M., Tolstikhin, I., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 423-431, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl benvisapp
Learning Transformation Invariant Representations with Weak Supervision

Coors, B., Condurache, A., Mertins, A., Geiger, A.

In International Conference on Computer Vision Theory and Applications, International Conference on Computer Vision Theory and Applications, 2018 (inproceedings)

Abstract
Deep convolutional neural networks are the current state-of-the-art solution to many computer vision tasks. However, their ability to handle large global and local image transformations is limited. Consequently, extensive data augmentation is often utilized to incorporate prior knowledge about desired invariances to geometric transformations such as rotations or scale changes. In this work, we combine data augmentation with an unsupervised loss which enforces similarity between the predictions of augmented copies of an input sample. Our loss acts as an effective regularizer which facilitates the learning of transformation invariant representations. We investigate the effectiveness of the proposed similarity loss on rotated MNIST and the German Traffic Sign Recognition Benchmark (GTSRB) in the context of different classification models including ladder networks. Our experiments demonstrate improvements with respect to the standard data augmentation approach for supervised and semi-supervised learning tasks, in particular in the presence of little annotated data. In addition, we analyze the performance of the proposed approach with respect to its hyperparameters, including the strength of the regularization as well as the layer where representation similarity is enforced.

avg

pdf [BibTex]

pdf [BibTex]


no image
Cause-Effect Inference by Comparing Regression Errors

Blöbaum, P., Janzing, D., Washio, T., Shimizu, S., Schölkopf, B.

Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS 2018) , 84, pages: 900-909, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl smalrteaser
Lions and Tigers and Bears: Capturing Non-Rigid, 3D, Articulated Shape from Images

Zuffi, S., Kanazawa, A., Black, M. J.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
Animals are widespread in nature and the analysis of their shape and motion is important in many fields and industries. Modeling 3D animal shape, however, is difficult because the 3D scanning methods used to capture human shape are not applicable to wild animals or natural settings. Consequently, we propose a method to capture the detailed 3D shape of animals from images alone. The articulated and deformable nature of animals makes this problem extremely challenging, particularly in unconstrained environments with moving and uncalibrated cameras. To make this possible, we use a strong prior model of articulated animal shape that we fit to the image data. We then deform the animal shape in a canonical reference pose such that it matches image evidence when articulated and projected into multiple images. Our method extracts significantly more 3D shape detail than previous methods and is able to model new species, including the shape of an extinct animal, using only a few video frames. Additionally, the projected 3D shapes are accurate enough to facilitate the extraction of a realistic texture map from multiple frames.

ps

pdf code/data 3D models [BibTex]

pdf code/data 3D models [BibTex]


no image
On Matching Pursuit and Coordinate Descent

Locatello, F., Raj, A., Praneeth Karimireddy, S., Rätsch, G., Schölkopf, B., Stich, S. U., Jaggi, M.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 3204-3213, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Discriminative Transfer Learning for General Image Restoration

Xiao, L., Heide, F., Heidrich, W., Schölkopf, B., Hirsch, M.

IEEE Transactions on Image Processing, 27(8):4091-4104, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl featured pic
Learning equations for extrapolation and control

Sahoo, S. S., Lampert, C. H., Martius, G.

In Proc. 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, 2018, 80, pages: 4442-4450, http://proceedings.mlr.press/v80/sahoo18a/sahoo18a.pdf, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, 2018 (inproceedings)

Abstract
We present an approach to identify concise equations from data using a shallow neural network approach. In contrast to ordinary black-box regression, this approach allows understanding functional relations and generalizing them from observed data to unseen parts of the parameter space. We show how to extend the class of learnable equations for a recently proposed equation learning network to include divisions, and we improve the learning and model selection strategy to be useful for challenging real-world data. For systems governed by analytical expressions, our method can in many cases identify the true underlying equation and extrapolate to unseen domains. We demonstrate its effectiveness by experiments on a cart-pendulum system, where only 2 random rollouts are required to learn the forward dynamics and successfully achieve the swing-up task.

al

Code Arxiv link (url) [BibTex]

Code Arxiv link (url) [BibTex]


no image
Causal Discovery Using Proxy Variables

Rojas-Carulla, M., Baroni, M., Lopez-Paz, D.

Workshop at 6th International Conference on Learning Representations (ICLR), 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]